Pascal/MT+ Programmers Guide

Internal Logic Errors

A. Appendix

Compilation and Run-time Error Messages

This appendix contains a list of the error messages output by the compiler and run—time system. The compilation errors have the same numbering sequence as described in the Pascal User Manual and Report, second edition, by Kathleen Jensen and Niklaus Wirth (New York: Springer—Verlag, 1978).

In most cases, the error description is self—explanatory and the user response is obvious. In certain cases where the error can occur in more than one context, suggested user responses are given. In each case, you must correct the error and recompile the program.

Compilation Errors

Table A—l. Compiler Error Messages

	Message
Meaning

	ERROR # 3
‘PROGRAM’ EXPECTED

	The compiler expects the reserved word ‘PROGRAM’ in this context.

	ERROR # 5
‘:‘ EXPECTED

	The compiler expects the token 1:1 in this context. This error can be caused by using an equal sign (~) in a VAR declaration.

	ERROR # 6
ILLEGAL SYMBOL (POSSIBLY MISSING ‘;‘ ON LINE ABOVE)

	The compiler does not allow the symbol in this context.

Table A—1. (continued)

	Message
Meaning

	ERROR # 11
‘[’ EXPECTED

	The compiler expects the token ‘[‘ in this context.

	ERROR # 15
INTEGER EXPECTED

	The compiler expects an integer value in this context.

	ERROR # 16
‘=’ EXPECTED

	The compiler expects the token in this context. This error can be caused by using a colon (:) in a TYPE or CONST declaration.

	ERROR # 17
‘BEGIN’ EXPECTED

	The compiler expects the reserved word ‘BEGIN’ in this context.

	ERROR # 18
ERROR IN DECLARATION PART

	The compiler encountered an error in the declaration. This error can be caused by an illegal backward reference to a type in a pointer declaration.

	ERROR # 50
ERROR IN CONSTANT

	The compiler encountered a syntax error in a literal constant. This error can occur when using recursion, or improperly using INP and
OUT.

Table A—1. (continued)

	Message
Meaning

	ERROR # 55
‘TO’ OR ‘DOWNTO’ EXPECTED IN FOR STATEMENT

	The compiler expects the reserved word ‘TO’ or ‘DOWNTO’ in this context.

	ERROR # 58
ERROR IN <FACTOR> (BAD EXPRESSION)

	The compiler encountered a syntax error in the expression.

	ERROR # 101
IDENTIFIER DECLARED TWICE

	The compiler encountered an identifier that is already declared.

	ERROR # 102
LOW BOUND EXCEEDS HIGH BOUND

	For subrange types, the low bound must be less than or equal to the high bound.

	ERROR # 103
IDENTIFIER IS NOT OF THE APPROPRIATE CLASS

	The compiler encountered a variable name used as a type, or a type used as a variable name.

	ERROR # 104
UNDECLARED IDENTIFIER

	The compiler encountered an identifier that has not been declared.

	ERROR # 105 SIGN NOT ALLOWED

	Signs are not allowed on non-INTEGER or non-REAL constants.

Table A—1. (continued)

	Message
Meaning

	ERROR # 106
NUMBER EXPECTED

	The compiler expects a number in this context. This error can occur as the compiler checks for numbers in an expression after all other possibilities have been exhausted.

	ERROR # 107
INCOMPATIBLE SUBRANGE TYPES

	Types must be compatible for subrange comparison and assignment. For example, ‘A’ .. ‘Z’ is not compatible with 0. .9.

	ERROR # 108
FILE NOT ALLOWED HERE

	Comparison and assignment of FILE types is not allowed.

	ERROR # 109
TYPE MUST NOT BE REAL

	The compiler does not allow the type REAL in this context.

	ERROR # 110
<TAGFIELD> TYPE MUST BE SCALAR OR SUBRANGE

	The tagfield in a CASE—variant record must be a scalar or subrange type.

	ERROR # 1ll
INCOMPATIBLE WITH <TAGFIELD> PART

	The type of the selector in a CASE—variant record is not compatible with the type of the tagfield.

Table A—1. (continued)

	Message
Meaning

	ERROR # 113
INDEX TYPE MUST BE A SCALAR OR A SUBRANGE

	The type of an array index must be declared as a scalar or subrange.

	ERROR # 115
BASE TYPE MUST BE A SCALAR OR A SUBRANGE

	The base type of a set must be a declared as a scalar or subrange.

	ERROR # 116
ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

	There is an error in the type of a variant when using NEW or DISPOSE.

	ERROR # 117
UNSATISFIED FORWARD REFERENCE

	A forwardly declared pointer was never defined.

	ERROR # 119
FORWARD DECLARED PROCEDURE CANNOT RESPECIFY PARAMETERS

	Self-explanatory.

	ERROR # 120
FUNCTION RESULT TYPE MUST BE A SCALAR, SUBRANGE, OR
POINTER

	The function is declared with a return value of some nonscalar type such as STRING. This is not allowed in Pascal/MT+.

	ERROR # 121
FILE VALUE PARAMETER NOT ALLOWED

	FILE types must be passed as VAR parameters.

Table A—1. (continued)

	Message
Meaning

	ERROR # 122
FORWARD DECLARED FUNCTION CANNOT RESPECIFY RESULT TYPE

	Self-explanatory

	ERROR # 125
ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

	The compiler encountered an error in the type of a parameter to a procedure. This error can be caused by not having the parameters in the proper order for built—in procedures. It can also be caused by attempting to read or write pointers, enumerated types, etc.

	ERROR # 126
NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION

	The number of parameters passed to the procedure does not match the number specified in the procedure’s declaration.

	ERROR # 127
ILLEGAL PARAMETER SUBSTITUTION

	The type of a parameter passed to the procedure does not match the corresponding formal parameter in the procedure’s declaration.

	ERROR # 129
TYPE CONFLICT OF OPERANDS

	The operands in the expression have incompatible types.

	ERROR # 130
EXPRESSION IS NOT OF SET TYPE

	The context of the expression requires the type
SET.

Table A-1. (continued)

	Message
Meaning

	ERROR # 131
TESTS ON EQUALITY ALLOWED ONLY

	SET types can only be compared for equality; no other comparison is allowed.

	ERROR # 134
ILLEGAL TYPE OF OPERAND(S)

	The operands are not valid for this operator.

	ERROR # 135
TYPE OF OPERAND MUST BE BOOLEAN

	The operands to AND, OR, and NOT must be BOOLEAN.

	ERROR # 136
SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE

	An element of a set must be a scalar of subrange type.

	ERROR # 137
SET ELEMENT TYPES MUST BE COMPATIBLE

	All the elements of a set must be of a compatible type.

	ERROR # 138
TYPE OF VARIABLE IS NOT ARRAY

	A subscript was specified for a variable that was not declared as ARRAY OF ...

	ERROR # 139
INDEX TYPE IS NOT COMPATIBLE WITH THE DECLARATION

	The type of the expression that specifies an array subscript is incompatible with the array type.

Table A—1. (continued)

	Message
Meaning

	ERROR # 140
TYPE OF VARIABLE IS NOT RECORD

	This error occurs when there is an attempt to access a non-RECORD data structure with the dot operator ‘.‘ or the ‘WITH’ statement.

	ERROR # 141
TYPE OF VARIABLE MUST BE FILE OR POINTER

	This error occurs when the pointer reference character follows a variable that is not of type pointer or FILE.

	ERROR # 143
ILLEGAL TYPE OF LOOP CONTROL VARIABLE

	The control variable in an iterative loop can be only be a locally declared, non—REAL scalar value.

	ERROR # 144
ILLEGAL TYPE OF EXPRESSION

	The expression used as a selector in a CASE statement must be of non—REAL, scalar type.

	ERROR # 145
TYPE CONFLICT

	The selector in a CASE statement is not the same type as the selecting expression.

	ERROR # 147
LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION

	The selector in a CASE statement is not the same type as the selecting expression.

Table A—1. (continued)

	Message
Meaning

	ERROR # 148
SUBRANGE BOUNDS MUST BE SCALAR

	The lower and upper bounds of a subrange must be scalar types.

	ERROR # 149
INDEX TYPE MUST NOT BE INTEGER

	An array bound cannot be declared type INTEGER or LONGINT, it must be a subrange type.

	ERROR # 151
ASSIGNMENT TO FUNCTION IS NOT ALLOWED

	A value cannot be assigned to a function.

	ERROR # 152
NO SUCH FIELD IN THIS RECORD

	The compiler cannot find the specified field in the record.

	ERROR # 155
CONTROL VARIABLE CANNOT BE FORMAL OR NONLOCAL

	The control variable in a FOR loop must be locally declared.

	ERROR # 156
MULTIDEFINED CASE LABEL

	A label in a CASE statement has been defined more than once.

	ERROR # 158
NO SUCH VARIANT IN THIS RECORD

	The compiler cannot find the specified variant in the record.

Table A—1. (continued)

	Message
Meaning

	ERROR # 159
REAL OR STRING TAGFIELDS NOT ALLOWED

	The tagfield in a CASE-variant record must be a scalar or subrange type.

	ERROR # 162
PARAMETER SIZE MUST BE CONSTANT

	This error occurs when using NEW or DISPOSE with a variant that is not a constant.

	ERROR # 165
MULTIDEFINED LABEL

	This error occurs when more than one statement is assigned the same label.

	ERROR # 168
UNDEFINED LABEL

	This error occurs when a declared label was not used to label a statement.

	ERROR # 169
ERROR IN BASE SET

	The base type of a set must be a scalar or subrange type.

	ERROR # 170
VAR PARAMETER EXPECTED

	This error occurs when an array is passed as a value parameter.

	ERROR # 174
PASCAL FUNCTION OR PROCEDURE EXPECTED

	The compiler expects a function or procedure at this lexical level.

Table A—1. (continued)

	Message
Meaning

	ERROR # 183
EXTERNAL DECLARATION NOT ALLOWED AT THIS NESTING LEVEL

	This error occurs when an EXTERNAL variable is declared anywhere except at the outermost (global) level.

	ERROR #206
IL1EGAL REAL NUMBER

	The integer part of a REAL constant exceeds the valid range.

	ERROR # 250
TOO MANY SCOPES OF NESTED IDENTIFIERS

	There is a limit of 15 nesting levels at compile time. This includes WITH and procedure nesting. Simplify the program and recompile.

	ERROR # 251
TOO MANY NESTED PROCEDURES OR FUNCTIONS

	There is a limit of 15 nesting levels at run-
time. This error can also occur when more than
200 routines are in one compiled module.
Simplify and recompile.

	ERROR # 253
PROCEDURE (OR PROGRAM BODY) TOO LONG

	A procedure generated code that overflowed the internal procedure buffer. The limit is 4096 bytes. Reduce the size of the procedure and recompile.

	ERROR # 397
TOO MANY FOR OR WITH STATEMENTS IN A PROCEDURE

	There is a limit of 16 FOR or WITH statements in a single procedure. Simplify and recompile.

Table A-1. (continued)

	Message
Meaning

	ERROR # 398
IMPLEMENTATION RESTRICTION

	Normally used for arrays and sets that are too big to be manipulated or allocated.

	ERROR # 407
SYMBOL TABLE OVERFLOW

	There is not enough space left in the symbol table. Use the Kn compiler option to eliminate unused entry points, or segment the program into smaller modules.

	ERROR # 496
INVALID OPERAND TO INLINE

	Usually due to reference that requires address calculation at run—time.

	ERROR # 500
NON ISO-STANDARD FEATURE BEING USED

	This is a warning only and does not prevent the program from compiling.

	ERROR # 998
ERROR IN CONDITIONAL COMPILATION PARAMETER

	There is an error in one or more conditional compilation parameters.

	ERROR # 999
COMPILER UNABLE TO CONTINUE DUE TO PREVIOUS ERRORS

	It is possible for a program to be syntactically correct and still have semantic errors that can confuse the compiler. The compiler stops early with this error number. Look carefully at the line on which the compilation halts. Make some corrections and recompile.

Run-time Errors

Table A—2 lists the error messages reported by the run—time system.

Table A—2. Run—tine Error Messages

	STRING OVERFLOW (TRUNCATED)

	This error occurs when a string constant is assigned to a variable whose declared length is insufficient to hold the constant.

	SUBSCRIPT/SUBRANGE OUT OF BOUNDS

	This error occurs when a subscripted array reference or a subrange reference is not within the declared bounds.

	FLOATING POINT OVERFLOW

	This error occurs when a REAL number becomes larger than the largest possible number that can be represented in internal floating—point form.

End of Appendix A

B. Appendix

LINK68 Error Messages

LINK68 returns two types of error messages: diagnostic and logic. Both types of error messages have the following form:

LINK68:
<Error Message>

A diagnostic error prevents your program from linking. You should make the appropriate correction to your program and try again.

A logic error is a non—recoverable error in the internal logic of LINK68. If you receive one of these messages, contact the place you purchased your system for assistance. You should provide the following:

· The version of the operating system you are using.

· A description of your system’s hardware configuration.

· Sufficient information to reproduce the error. Indicate which program was running at the time the error occurred. If possible, also provide a disk with a copy of the program.

Diagnostic Error Messages

Table B—l list the LINK68 diagnostic errors in alphabetic order with explanations and suggested user responses.

Table B-l. LINK68 Diagnostic Error Messages

	Message
	Meaning

	LINK68:ILLEGAL CHARACTER: ‘<char>’

	The character <char> is not a legal character in the command line. Correct the error and relink.

	LINK68: SYNTAX ERROR, EXPECTED: <item>

	There is a syntax error in the command line. LINK68 expected to encounter <item>. Correct the error and relink.

Table B—1. (continued)

	Message
	Meaning

	LINK68:
	UNEXPECTED END OF COMMAND STREAM

	
	LINK6S unexpectedly encountered the physical end of the command stream before the logical end. Check the command line for proper syntax and options.

	LINK68:
	UNRECOGNIZED OR MISPLACED OPTION NAME: ‘<option>”

	
	The option given by <option> is not a valid LINK68 option, or it is misplaced in the command line. Correct the error and relink.

	LINK68:
	HEAP OVERFLOW -- NOT ENOUGH MEMORY

	
	There is not enough memory for LINK68 to continue processing.

	LINK68:
	IMPROPERLY FORMED HEX NUMBER: “<num>”

	
	The hexadecimal number h contains an invalid digit. Correct the error and relink.

	LINK68:
	PARSE END BEFORE COMMAND STREAM END

	
	LINK68 has unexpectedly encountered the logical end of the command line before the physical end. Check the command line for proper syntax and options.

	LINK68:
	CANNOT OPEN <filename> FOR INPUT

	
	The file indicated by the variable <filename> is invalid, or the file does not exist. Check the filename before you reenter the LINK68 command line.

	LINK68:
	NESTED COMMAND FILES NOT ALLOWED

	
	LINK68 does not allow you to nest command files. Correct the error and relink.

Table B-1. (continued)

	Message
Meaning

	LINK68:
TOO MANY OVERLAYS

	LINK68 allows a maximum of 255 overlays. Examine your program and simplify the overlay scheme. Reassemble or recompile the source code before relinking.

	LINK68:
COMMAND LINE TOO LONG

	The command line does not fit on one line. Correct the error by using a command file and relink.

	LINK68:
OVERLAYS NESTED TOO DEEPLY

	LINK68 allows only 5 levels of overlays. Examine your program and simplify the overlay scheme. Reassemble or recompile the source code before relinking.

	LINK68: CANNOT SET DATA OR BSS BASE WHEN USING OVERLAYS

	The BSSBASE and DATABASE options are not allowed when linking overlays. Correct the error end relink.

	LINK68:
ILLEGAL REFERENCE TO OVERLAY SYMBOL “<symbol-name>” FROM MODULE <module-name>

	The module indicated by <module—name> contains a illegal reference to the symbol indicated by <symbol—name>.

	LINK68:
“<symbol-name>” DOUBLY DEFINED IN <filename>

	The symbol <symbol—name> is defined twice. The variable <filename> indicates the file where the second definition occurs. Rewrite the source code and provide a unique definition for each symbol. Reassemble or recompile the file before relinking.

Table B—1. (continued)

	Message
	Meaning

	LINK68:
	FILE FORMAT ERROR IN <filename>

	
	The file indicated by the variable <filename> is not an object file or the file has been corrupted. Ensure that the file is an object file, output by the assembler or compiler. Reassemble or recompile the file before relinking.

	LINK68:
	INVALID SYMBOL FLAG IN <filename>

	
	LINK68 does not recognize the symbol flags indicated by the variable <filename>. The file is not an object file or it has been corrupted. Ensure that the file is an object file, output by the assembler or compiler. Reassemble or recompile the file before relinking.

	LINK68:
	INVALID RELOCATION FLAG IN <filename>

	
	The contents of the file indicated by the variable <filename> are incorrectly formatted.
The file is not an object file or it has been corrupted. Ensure that the file is an object file, output by the assembler or compiler. If the file is an object file and this error occurs, the file has been corrupted. Reassemble or recompile the file before relinking.

	LINK68:
	NO RELOCATION BITS IN <filename>

	
	The file indicated by the variable <filename> is not an object file or has been corrupted. Ensure that the file is an object file, output by the assembler or compiler. If the file is an object file and this error occurs, the file has been corrupted. Reassemble or recompile the file before relinking.

	LINK68:
	WRITE ERROR ON FILE: <filename>

	
	The disk to which LINK68 is writing is full. Erase unnecessary files, if any, or insert a new disk before you reenter the LINK68 command line.

Table B—1. (continued)

	Message
	Meaning

	LINK68:
	READ ERROR ON FILE <filename>

	
	The object file indicated by the variable <filename>, does not have enough bytes. The file either is incorrectly formatted or has been corrupted. This error is commonly caused when the input to LINK68 is a partially assembled or compiled object file. The assembler, AS68, and some compilers create partial object files when they receive the disk full abort message while assembling or compiling a file. Ensure that the file is a complete object file. Reassemble or recompile the file before relinking.

	LINK68:
	SYMBOL TABLE OVERFLOW

	
	The object code contains too many symbols for the size of the symbol table. Rewrite the source code using fewer symbols. Reassemble or recompile the file before relinking.

	LINK68:
	UNABLE TO CREATE FILE <filename>

	
	Either the output file indicated by <filename> has an invalid drive code, or the disk to which LINK6B is writing is full. Check the drive code. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert a new disk before you reenter the LINK6B command line.

	LINK68:
	UNABLE TO OPEN TEMPORARY FILE <filename>

	
	Either the file, indicated by <filename>, has an invalid drive code, specified by the f option, or the disk to which LINK68 is writing is full. Check the drive code. If it is correct, the disk is full. Erase unnecessary files, if any, or insert a new disk before you reenter the LINK68 command line.

Table B—1. (continued)

	Message
	Meaning

	LINK68:
	UNDEFINED SYMBOL(S)

	
	The symbol or symbols which are listed one per line on the lines following the error message are undefined. Provide a valid definition and reassemble the source code before you reenter the LINK68 command line. If the symbols are not referenced by the program, you can use the UNDEFINED option in the command line.

Internal Logic Errors

The following list identifies the LINK68 internal logic error messages.

LINK68:
INTERNAL ERROR IN <procname>

LINK68:
TEXT SIZE ERROR IN <filename>

LINK68:
RELATIVE ADDRESS OVERFLOW AT Lx IN <filename>

LINK68:
SEEK ERROR ON FILE <filename>

LINK68:
SHORT ADDRESS OVERFLOW IN <filename>

LINK68:
UNABLE TO REOPEN FILE <filename>

End of Appendix B

C. Appendix

Run-time Library Routines

This appendix describes the run—time library routines that are specific to the implementation for the Motorola MC68000 microprocessor and the CP/M—68K operating system.

The following tables list the names of the routines and their purposes. Knowledge of what these routines do can be helpful when you are disassembling a program.

Note: You should not call these routines from your program because Digital Research does not guarantee parameter list compatibility between releases.

Table C—1. PASLIB Routines

	
	System Access

	_BDOS
_CHN
CHAIN
_HLT

_INI
_XJP
	Call operating system directly
Program chaining routine
Pascal interface for
Halt routine; returns to operating system
Run—time initialization
Table case jump routine

	
	String Handling Routines

	Routine
	Purpose

	_EQD
_NED
_GTD
_LTD
_GED
_LED

_LBA
_ISB
_CNC
_STR
_RST
_WCH

POS
	String comparison routine for =
String comparison routine for <>
String comparison routine for >
String comparison routine for <
String comparison routine for >=
String comparison routine for <=

Load concat string buffer address
Initialize string buffer
Concatenate a string to the buffer
String store
Read a string from a file
Write a string to a file
Run-time support for strings

	
	Set Manipulation Routines

	Routine
	Purpose

	 EQS

 NES

_GES
_LES
_SAD
_SSB
_SML
_SIN
_BST
_BSR
	Set equality
Set inequality
Set superset
Set subset
Set union
Set difference
Set intersection
Set membership
Build singleton set
Build subrange set

Table C-1. (continued)

	Routine
	Purpose

	 EQA
_NEA

_GTA
_LTA
_GEA
_LEA
	Array comparison routine for =
Array comparison routine for <>
Array comparison routine for >
Array comparison routine for <
Array comparison routine for >=
Array comparison routine for <=

	
	Character Manipulation Routines

	Routine
	Purpose

	_CCH
_RNC
_WNC
_RCH
_CHW

_CRL
	Concatenate a character to the buffer
Read next character from a file
Write next character to a file
Read a character from a file
Write a character to a file
Write a newline character (CR) to a file

	
	Bit Manipulation Routines

	Routine
	Purpose

	TSTBIT
SETBIT
CLRBIT
	Test for a bit on
Turn a bit on
Turn a bit off

Table C-1. (continued)

	
	I/O and File Handling Routines

	Routine
	Purpose

	_SFB
_DWD

_SIA

_SOA

_DIO
_CWT

_RNB

_WNB
	Set global FIB address
Set default width and decimal places
Reset input vector
Reset output vector
Set I/O vectors to default addresses
Read until EOLN is True on a file
Read n bytes from a file
Write n bytes to a file

	OPEN
BLOCKREA
BLOCKWRI
SEEKREAD
SEEKWRIT
CREATE
CLOSE
CLOSEDEL
GNB
WNB
PAGE
EOLN
EOF
RESET
REWRITE
GET
PUT
ASSIGN
PURGE
IORESULT
COPY
INSERT
DELETE
	File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine

	
	Arithmetic Routines

	Routine
	Purpose

	_MUL
_RIN
_RDL
_WIN

_RTL
	Multiply a long integer
Read integer from a file
Read a long integer from a file
Write an integer to a file
Write a long integer to a file

	_DVL

_MDL
	32—bit DIV software routine
32-bit MOD software routine

Table C-1. (continued)

	
	Memory Manipulation Routines

	Routine
	Purpose

	MOVELEFT

MOVERIGH
	Block move left end to left end

Block move right end to left right

	_NEW

_DSP
	Allocate memory for NEW procedure

Deallocate memory for DISPOSE procedure

	MEMAVAIL
	MEMAVAIL function

	MAXAVAIL
	MAXAVAIL function

	LMEMAVAI
	LMEMAVAIL function

	LMAXAVAI
	LMAXAVAIL function

Table C-2. BCDREALS Routines

	Routine
	Purpose

	_EQR
_NER
_GTR

_LSR
_GER
_LER

_XOP
	Real comparison for =
Real comparison for <>
Real comparison for >
Real comparison for <
Real comparison for >=
Real comparison for <=

Floating-point operations

	_RAD
_RSB
_RML

_RDV

_RNG

_RAB
	Real add
Real subtract
Real multiply
Real divide
Real negate
Real absolute value

	_QQS
_FLT
	Store a real
Convert integer to float

	TRUNC
ROUND
	Built-in truncate function

Built-in round function

Table C-3. FPREALS Routines

	Routine
	Purpose

	_EQR
_NER
_GTR
_LSR
_GER
_LER

_RAD
_RSB
_RML
_RDV

_RNG
_RAB
_XOP
	Real comparison for =
Real comparison for <>
Real comparison for >
Real comparison for <
Real comparison for >=
Real compasison for <=

Real add
Real subtract
Real multiply
Real divide
Real negate
Real absolute value
Floating-point operations

	_RRL

_WRL
	Read a real from a file

Write a real to a file

	_QQS

_FLT

	Store a real
Convert integer to float

	TRUNC
ROUND
SQR
SQRT
SIN
COS
ARCTAN
EXP
LN
	Built-in truncate function
Built-in round function
Built-in square function
Built-in square root function
Built—in sine function
Built—in cosine function
Built-in arctangent function
Built-in exponential function
Built-in natural log function

Table C-4. FULLHEAP Routines

	Routine
	Purpose

	_NEW
	Allocate memory from heap

	_DSP
	Return memory space to heap

End of Appendix C

D. Appendix

Internal Data Representation

This appendix describes how Pascal/MT+ internally represents the constants and variables declared in your programs. This information is useful when you want to interface Pascal/MT+ code with assembly language programs (see Section 8).

Each Pascal/MT+ implementation differs in the way it internally represents data. The information presented here is specific to the Motorola MC68000 microprocessor running under the CP/M-68K operating system.

Size and Range of Data types

The table below summarizes the size and range of Pascal/MT+ data types for the 68K implementation.

Table D—l. Size and Range of Pascal/MT+ Data Types

	Data Type
	Size
	Range

	BOOLEAN
	2 bytes
	FALSE .. TRUE

	BYTE
	1 byte.
	0 .. 255

	CHAR
	1 byte.
	0 .. 255

	INTEGER LONGINT
	2 bytes
4 bytes
	-32768 .. 32767

2-32 .. 2+32

	WORD
	2 bytes
	0 .. 65535

	BCD REAL FLOATING REAL
	10 bytes
8 bytes
	18 total digits, 4 decimal places
10-307
..
lO307

	SET
	32 bytes
	0 .. 255

	STRING
	1. .256 bytes
	

Multibyte Storage

All data represented by multiple bytes is stored in memory with the high—order (most significant) byte first. That is, the high-order byte appears at the lowest address; then the other bytes appear at increasing addresses with the low-order (least significant) byte at the highest address.

BOOLEAN Representation

Pascal/MT+ represents variables of type BOOLEAN using two consecutive bytes. The high-order byte is stored first. The least significant bit (LSB) in the low-order byte determines the value. If the bit is 0, the value is TRUE; if the bit is 1, the value is FALSE.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	L

S

B

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-1. BOOLEAN Representation

BYTE Representation

Pascal/MT+ represents variables of type BYTE using one byte. All the bits are considered significant.

	0
	
	
	
	
	
	
	
	

	
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-2. BYTE Representation

CHAR Representation

Pascal/MT+ represents variables of type CHAR using one byte to contain the ASCII representation. The most significant bit (MSB) is ignored.

	0
	M

S

B
	
	
	
	
	
	
	

	
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-3. CHAR Representation

INTEGER Representation

Pascal/MT+ represents variables of type INTEGER in two’s complement form using two consecutive bytes. The high-order byte is stored first, and the most significant bit (MSB) is the sign bit.

	SB

II

GT

N
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	L

S

B

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-4. INTEGER Representation

LONGINT Representation

Pascal/MT+ represents variables of type LONGINT in two’s complement form using four consecutive bytes. The high—order byte is stored first, and the most significant bit (MSB) is the sign bit.

	SB

II

GT

N
	
	
	
	
	
	
	. . .
	
	
	
	
	
	
	
	
	
	

	3

1
	3

0
	2

9
	2

8
	2

7
	2

6
	2

5
	
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-5. LONGINT Representation

WORD Representation

Pascal/MT+ represents variables of type WORD using two consecutive bytes. The high-order byte is stored first. All the bits are considered significant.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

Figure D-5. WORD Representation

REAL Representation

Pascal/MT+ represents variables of type REAL using two different formats:

· Fixed-point variables use the Binary Coded Decimal (BCD) format. Fixed—point numbers are decimal numbers that have a fixed total number of digits and a fixed number of digits to the right of the decimal point.

· Floating—point variables use the Institute of Electrical and Electronic Engineers (IEEE) double precision format. Floating-point numbers are very large or very small numbers expressed in scientific notation with a mantissa and an optionally signed integer exponent.

BCD Format

The BCD format uses 10 consecutive bytes with the high-order byte stored first.

	1
	2
	3
	4
	5
	6
	7
	
	8
	9
	10

	D

1
	D

2
	D

3
	D

4
	D

5
	D

6
	D

7
	D

8
	D

9
	D

1

0
	D

1

1
	D

1

2
	D

1

3
	D

1

4
	.
	D

1

5
	D

1

6
	D

1

7
	D

1

8
	SIGN

Figure D-7. BCD REAL Representation

In bytes 1 through 9, the decimal digits are packed two to a byte. That is, each digit occupies four bits. Byte 10 is reserved for the sign, with 0 for positive, and FF11 for negative.

There is an implicit decimal point immediately preceding byte number 8, so the BCD format can represent a number with 18 total digits and 4 digits to the right of the decimal point.

IEEE Format

Pascal/MT+ represents floating-point binary data using the IEEE double—precision format. This format uses eight consecutive bytes, with the 64 bits containing the following fields: a 52— bit mantissa, an 11—bit exponent, and a sign-bit. The least significant byte of the mantissa is stored at the highest memory address.

	S

	Exponent
	Mantissa

	63
	62

52
	51

0

 Higher Memory ------------(
Figure D-8. Double-precision Floating-point Format

The double-precision format normalizes floating—point numbers so the most significant bit of the mantissa is always 1 for nonzero numbers. Because the most significant bit of the mantissa must be 1 for nonzero numbers, this bit is not stored. This is called using an implicit normalized bit. The binary point is considered to be immediately to the right of the normalized bit.

In the double—precision format, the exponent has a bias of 1023 (decimal) or 3FF (hexadecimal) so 400 represents an exponent of +1 while 3FE represents an exponent of -1.

Suppose a double-precision floating—point binary number appears in memory as the eight—byte value:

CO 43 CO 00 00 00 00 00

higher memory ——-->

You can visualize this value as a string of 64 bits in the form:

C
0
4
3
C
0
0
0
0
0
0
0
0
0

1100
0000
0100
0011
1100
0000
0000
0000
0000
0000
0000
0000
0000
0000

The high—order bit equal to 1 indicates the sign is negative.

C
0
4
3
C
0
.
.
.
.
1100
0000
0100
0011
1100
0000
.
.
.
.
Ignoring the sign bit yields a biased exponent value of

4
0
4
.
.

0100
0000
0100
.
.

^

s (ignored)

Subtracting the bias (3FF) from the exponent 404 gives a true binary exponent of 5.

Restoring the implicit normalized bit to the mantissa produces the bit pattern shown below:

3
C
0
.
.

0011 1100
0000
.
.

1001 1110
0000
.
.

^

implicit normalized bit (restored)

Because the binary point is one position to the right of the implicit normalized bit, the value of the mantissa is

1 001 1110 0000

 ^

Since the true binary exponent is 5, the binary point must be shifted to right 5 places, giving a new value to the mantissa as shown below:

1001 11 10 0000 .
.

^
To calculate the value represented by the mantissa, multiply by the true binary exponent, which is now 2 , because the binary point has been shifted to the right.

(2 + 2 + 2 + 2 + 2) * 2 = (32 + 4 + 2 + 1 + 1/2) * 1 = 39.5

Thus, the eight-byte value

00 00 00 00 00 CO 43 CO

is the double-precision float—binary representation of the decimal number -39.5.

Array Representation

Pascal/MT+ represents variables of type ARRAY in row-major order. Figure D—9 shows the storage for the declaration:

A: ARRAY [1. .3, 1. .31] OF CHAR

byte number

	00
	01
	02
	03
	04
	05
	06
	07
	08

	A[1,1]
	A[1,2]
	A[1,3]
	A[2,1]
	A[2,2]
	A[2,3]
	A[3,1]
	A[3,2]
	A[3,3]

High memory ->

Figure D-9. Storage for Arrays

Logically, this is a one-dimensional array of vectors. In Pascal/MT+, all arrays are logically one-dimensional arrays of some type.

Set Representation

Pascal/MT+ represents variables of type SET using 32 consecutive bytes with each element of the set using one bit. The low-order bit (bit 0) of each byte is the least significant bit in the byte.

Figure D-l0 shows the storage for the set A. .Z. The first element in the set is capital A, which occupies position 65 in the ASCII collating sequence (see Appendix F). Thus, the first bit in the set is bit 65, the first bit in byte 8. The last bit in the set is bit 90, which is bit 2 in byte 11, and corresponds to capital Z.

Byte Number

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	0a
	0b
	0c
	0d
	0e
	0f
	10
	…1f

	00
	00
	00
	00
	00
	00
	00
	00
	ff
	ff
	ff
	07
	00
	00
	00
	00
	00
	00

Higher memory ->

Figure D-10 Storage for the Set A. .Z

Static Data Allocation

Pascal/MT+ allocates space for variables in the order you declare them. The exception is variables appearing in an identifier list before a type. These are allocated in reverse order. For example, given the declaration:

VAR

a,b,c : INTEGER

c is allocated first, then b, then a.

Global Variables

Pascal/MT+ stores global variables contiguously with no space left between one declaration and the next. For example, given the declaration

VAR

a
: INTEGER;

b
: CHAR;

i,j,k
: BYTE;

l
: INTEGER;

p
: ^INTEGER;

Pascal/MT+ stores the variables as shown below:

	00
	01
	02
	03
	04
	06
	08
	10
	11
	12
	14

	A

[msb]
	A

[lsb]
	0
	b
	k
	j
	i
	L

[msb]
	L

[lsb]
	p

[msb]
	p

[lsb]

Higher memory ->

Figure D-11 Contiguous Variable Storage

Local Variables

All local variables are allocated on the stack. If a single-byte variable (BYTE or CHAR) falls on an odd byte boundary, the compiler pads the variable with one byte and aligns it on a word boundary to improve code efficiency.

End of Appendix D

E. Appendix

Writing Portable Programs

This appendix describes certain features of Pascal/MT+ that are not portable to other implementations. This does not mean that these features are not available in other implementations, but only indicates that if they are available, they are implemented differently.

If you want to write portable programs, you should avoid using the implementation-dependent features listed below, but if you do, isolate them so that they are easy to locate and modify when you port the program.

Hardware-dependent Features

All the following Pascal/MT+ features depend on detailed knowledge of a particular processor’s architecture and native instruction set.

· ABSOLUTE variable addressing

· INLINE

· INTERRUPT procedures

· I/O port addressing

· Redirected I/O

System-dependent Features

All the following Pascal/MT+ features either depend on a particular implementation’s run-time system or operating system’s file structure. Thus, they can vary from one implementation to another.

· logical device names such as CON: and RDR:

· the values returned by IORESULT

· chaining from one program to another

· having overlays call other overlays

· dependence upon EOF for non—TEXT files. Some operating systems keep track of how much data is in the file to the exact byte, while others only keep track to the sector/block level, and the last sector/block can contain uninitialized data.

· BLQCKREAD/BLOCKWRITE depends on knowledge of the correct allocation block size in the BIOS. Use SEEKREAD/SEEKWRITE instead.

· temporary files

In general, if compliance with the ISO standard is desired, you should avoid using variant records that circumvent type checking.

End of Appendix E

C-1

C-5

