
Pascal
Reference Manual

Silicon Val'., Software, Inc.
10011 N. FoorI'IIft -.a., SLiIe nl ~IO. CA 95014

Pascal

Language Reference Manua1

version 2.0 of 1st September 1983

Silicon Valley Software, Inc.
10011 North Poothill Blvd. Suite 111

Cupertino
California 95014

This Pascal Reference Manual was produced by:

Jeffrey Barth, R. Steven Glanville, and Henry McGilton.

Silicon Valley Software, Inc.
Publication Number: 810615-01

Copyright 1983 by Silicon Valley Software, Inc.

All rights reserved. No part of this Pascal Reference Manual
may be reproduced, translated, .transcribed or transmitted in any
form or by any means manual, electronic, electro-magnetic, chemi­
calor optical without explicit written permission from Silicon
Valley Software, I·nc.

Preface

PlIBPACB

This Pascal Reference Manual describes the Pascal Programming
language as implemented by Silicon Valley Software, Inc.
Throughout this manual, -SVS Pascal- is to mean that version of
Pascal as implemented by Silicon Valley Software, Inc.

SVS Pascal implements the Pascal language as defined in the
proposed ISO Standard that appeared in Pascal News, Number 20,
December 1980. Appendix C -Relationships to ISO Pascal"
describes areas where SVS Pascal deviates from the ISO standard.

In common with many Pascal implementations, SVS Pascal has
extensions. These mainly derive from features implemented in the
OCSD Pascal System. Primarily, those extensions revolve around
facilities for compiling code modules separately and string han­
dling. The other major areas of extension are concerned with
input and output facilities, single'and double precision floating

. point, and with standard procedures and functions. Differences
from OCSD Pascal are noted in Appendix D - -Relationships to UCSD
Pascal".

SCOPE 01' '!BIS IIU1UAL

This manual is a reference manual for SVS Pascal. It is not
intended as a user manual or a tutorial. Readers are expected to
already have some grasp of programming concepts, terminology, and
have at least a minimal understanding of Pascal. There are
approximately 50 books on Pascal programming in the commercial
market.

OVBKVIBW OP SIS IlARUAL

The overall layout of this manual loosely follows that of the
"Pascal User Manoal aDd Report", by Kathleen Jensen and Niklaus
Wirth. The phrase "Jensen and Wirth" is used to refer to that
book. There is somewhat more detail in this reference manual

Preface

than in Jensen and Wirth.

In general, the order that topics are presented in is: first
some narrative introductory material, then formal descriptions,
followed by examples.

Chapter 1 - ·Introduction· is an introduction to. Pascal terms
and concepts. It contains an overview of the Pascal language.
There is a description of the metalanguage that this manual uses
to describe the Pascal Language. Finally there are descriptions
of the basic elements of Pascal.

Chapter 2 - ·Defining Data Types" introduces the concepts of
data types and discusses the notations by which data types are
OilIned and declared.

Chapter 3 - ·Variables· describes the means whereby variables
are declared and referenced.

Chapter 4 - ·Expressions· describes Pascal expressions which
are used to derive new data values.

Chapter 5 - ·Statements· presents Pascal statements' and how
they are used to achieve computing actions.

Chapter 6 - "Input and Output" covers Pascal input and output
facilities.

Chapter 7 - "Program Structure" describes provram Structure in
Pascal, including the ideas of independent comp11ation units.

Chapter 8 - ·Standard Procedures and Functions" describes Pas­
cal standard procedures and functions, ·that is, those "built in"
facilities of the language that a user program need not provide.

Chapter 9 - "Pascal Compile Time Options" describes the compile
time options available .to the programmer, in order to exercise
control over some of the actions of the Pascal compiler and the
run time system.

Appendix A - "Messages from the Pascal System" is a list of
diagnostic messages from the Pascal compiler and the run-time .
library.

Appendix B - "Pascal Language Summary" provides a summary of
the Pascal language syntax.

Appendix C - "Relationships to ISO Pascal" covers the differ­
ences between SVS Pascal and ISO standard Pascal.

Appendix D - "Relationships to UCSD Pascal" covers the differ­
ences between SVS Pascal and UCSD Pascal.

Preface

Appendix E - "Data Representations" covers machine-dependent
issues such as data representation, data packing and parameter
passing.

Appendix F - "Operating the SVS Pascal System" describes the
system independent aspects of operating the system and the con­
siderations involved in linking programs written in several
languages.

Appendix G - "Operating System Specific Information" contains a
description of how to run the Pascal compiler on the host operat­
ing system, and also covers details of specific dependencies and
interfacing requirements (if any) of the host operating system.

CONTENTS

'Chapter 1 - Xntroduction •••••••••••••••••••••••••••••••••••••
1.1 Overview of the Pascal Language ••••••••••• ~ •••••••••••••
1.2 Metalanguage ••
1.3 Elementary Lexical Constructs •••••••••••••••••••••••••••

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8

Alphabet •••
Pascal Identifiers •••••••••••••••••••••••••••••••
Numbers ••
Pascal Strings •••••••••••••••••••••••••••••••••••
Pascal Labels ••••••••••••••••••••••••••••••••••••
Basic'Symbols ••••••••••••••••••••••••••••••••••••
Conventions for Spaces •••••••••••••••••••••••••••
Comments •••

Chapter 2 - Definiag Data Types ••••••••••••••••••••••••••••••
2.1 Defining Constants ••••••••••••••••••••••••••••••••••••••

2.1.1 Predefined constants •••••••••••••••••••••••••••••
2.2
2.3
2.4

2.5

2.6
2.7

Standard Types ••••••••••••••••••••••••• -•••••••••••••••••
Defining Data Types •••••••••••••••••••••••••••••••••••••
Simple Types ••
2.4.1 Scalar Types •••••••••••••••••••••••••••••••••••••
2.4.2 Subrange Types •••••••••••••••••••••••••••••••••••
Structured Types ••
2.5.1 Array Types ••••••••••••••••••••••••••••••••••••••
2.5.2 String Types •••••••••••••••••••••••••••••••••••••
2.5.3 Record Types •••••••••••••••••••••••••••••••••••••
2.5.4 Set Types ••
2.5.5 Pile Types •••••••••••••••••••••••••••••••••••••••
Pointer Types ••••••••••••••••••••••••• ~ •••••••••••••••••
Type Identity and Assignment Compatibility ••••••••••••••
2.7.1 Identical Types ••••••••••••••••••••••••••••••••••
2.7.2 Assignment Compatible Types

Chapter 3 - Variables ••
3.1 Declaring Variables •••••••••••••••••••••••••••••••••••••
3.2 Predeclared Variables •••••••••••••••••••••••••••••••••••
3.3 Establishing Variables ••••••••••••••••••••••••••••••••••
3.4 Lifetimes of Variables ••••••••••••••••••••••••••••••••••

3.4.1 Global Variables •••••••••••••••••••••••••••••••••
3.4.2 Lifetime of Formal Parameters ••••••••••••••••••••
3.4.3 Lifetime of Dynamic Variables ••••••••••••.••••••••

3.5 Referencing or Accessing Variables ••••••••••••••••••••••
3.5.1 Entire Variables •••••••••••••••••••••••••••••••••
3.5.2 Component Variables ••••••••••••••••••••••••••••••

3.5.2.1 Referencing' Indexed Variables •••••••••••
3.5.2.2 Referencing Strings •••••••••••••••••••••
3.5.2.3 Referencing Fields of Records •••••••••••
3.5.2.4 Referencing File Buffers ••••••••••••••••

3.5.3 Pointer Referenced Variables •••••••••••••••••••••

- i -

1
1
5
6
6
7
7
8
9
9

12
12

13
13
14
14
16
16
16
17
17
18
19
20
21
22
23
24
24
25

27
27
28
28
28
29
29
29
29
30
30
30
31
31
32
32

Chapter 4 - Bzpre •• ion....................................... 33
4.1 Operators in Expressions............................... 33
4.2 Address Evaluation Operator............................ 34
4.3 ROT Operator... 34
4.4 Multiplying Operators.................................. 34
4.5 Adding Operators....................................... 36
4.6 Sign Operators... 36
4.7 Relational Operators................................... 37

4.7.1 Comparison of Scalars.......................... 37
"4.7.2 Comparison of Booleans......................... 38
4.7.3 Direct Pointer Comparison...................... 38
4.7.4 String Comparison.............................. 38
4.7.5 Set Comparison •••••••• ·••••••••••••••••••••••••• 39
4.7.6 Ron-Comparable Types........................... 40

4.8 Out of Range Values.................................... 40
4.9 Order of Evaluation in Expressions..................... 40
4.10 Compile Time Constant Expressions...................... 41

4.10.1 Dead Code Elimination.......................... 41

Chapter 5 - Stat .. ent8....................................... 43
5.1 Statement Labels....................................... 43

5.1.1 Scope Of Statement Labels...................... 43
5.2 Assignment Statements.................................. 43

5.2.1 Assignments to Variables and Functions......... 43
5.3 Procedure Reference Statement.......................... 44
5.4 Structured Statements.................................. 45

~.4.1 BEGIN •• END - Compound Statements............. 45
5.4.2 IF •• THEN •• ELSE Statements.................. 45
5.4.3 CASE Statements................................ 46
5.4.4 WHILE •• DO Statements......................... 47
5.4.5 REPEAT •• UNTIL Statements..................... 48
5.4.6 POR •• DO Statements........................... 49

5.5 The WITH Statement..................................... 50
5.6 The GOTO Statement..................................... 51

Chapter 6 - Input and Output................................. 53
6.1 General Pile Handling Procedures....................... 53

6.1.1 The File Buffer Variable....................... 53
6.1.2 GET - Get Component from File.................. 54
6.1.3 PUT - Append Component to a File............... 55
6.1.4 RESET - Open an Existing File.................. 55
6.1.5 ~TE - Create or Overwrite a File •••• ·••••••• 56
6.1.6 The Buffering Option on RESET and RE~TE •••••• 56

6.2 Text File Handling Procedures.......................... 56
6.2.1 READ and RBADLN Intrinsics..................... 57
6.2.2 READ from a file of an¥ trPe ••••••••••••••••••• 58
6.2.3 WRITE and ~TELN Intrlnslcs................... 58
6.2.4 Write Parameters............................... 59

6.2.4.1 Integer Element........................ 59
6.2.4.2 Real or Double Element................ 59
6.2.4.3 Scalar Subrange Element............... 60
6.2.4.4 Character Element ••••••••••••••••••••• 60

ii

6.3

6.4

6.2.4.5 String Element or Packed Array of
Char ••••••••••••••••••••••••••••••••••

6.2.4.6 Boolean Element •••••••••••••••••••••••
6.2.4.7 Hexadecimal Output ••••••••••••••••••••
6.2.4.8 Pointer Output ••••••••••••••••••••••••

6.2.5 ~TE to file of any type ••••••••••••••••••••••
6.2.6 SEEK - Random Access to Typed Files ••••••••••••
6.2.7 CLOSE - Close a File •••••••••••••••••••••••••••
6.2.8 PAGE - Skip to New Page ••••••••••••••••••••••••
Block Input Output Intrinsics ••••••••••••••••••••••••••
6.3.1 BLOCKREAD - Read Block from Pile •••••••••••••••
6.3.2 BLOCKWRiTE - Write· Block to Pile •••••••••••••••
IORESOLT - Return Input-output Result ••••••••••••••••••

61
61
61
61
61
62
62
63
64
64
65
65

Chapter 7 - Prograa Structure.~.............................. 67
7.1 Compilation Units...................................... 67
7.2 Declarations and Scope of Identifiers.................. 72
7.3 Program Heading ••••••••••••••••••••••••••••••••••••• ~.. 74

7.3.1 Predeclared Variables.......................... 74
7.3.1.1 ARGC and ARGV - Access to Command

7.4

7.5

Line ••••••••••••••••••••••••••••••••••
Declarations •••
7.4.1 Label Declarations •••••••••••••••••••••••••••••
7.4.2 Constant Definition ••••••••••••••••••••••••••••
7.4.3 Type Definition ••••••••••••••••••••••••••••••••
7.4.4 Variable Declaration •••••••••••••••••••••••••••
Procedure and Function Declaration •••••••••••••••••••••
7.5.1 External and Forward Attributes ••••••••••••••••
7.5.2 Parameters for Procedures and Functions ••••••••

7.5.2.1
7.5.2.2
7.5.2.3

Value Parameters ••••••••••••••••••••••
Variable Parameters •••••••••••••••••••
Procedure and Punction Parameters •••••

Chapter 8 - Standard Procedures and PunctioDs ••••••••••••••••
8.1 String Manipulation Pacilities •••••••••••••••••••••••••

8.1.1 LENGTH - Determine String Length •••••••••••••••
8.1.2 COpy - Copy a Substring ••••••••••••••••••••••••
8.1.3 CONCAT - Concatenate Strings •••••••••••••••••••
8.1.4 POS - Match a Substring in a String ••••••••••••
8.1.5 SCANEQ and SCANNE - Scan for Character •••••••••
8.1.6 DELETE - Delete Characters from String •••••••••

8.2
8.1.7 INSERT - Insert Characters into String •••••••••
Storage Allocation Procedures ••••••••••••••••••••••••••
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

NEW - Allocate Storage •••••••••••••••••••••••••
DISPOSE - Dispose of Allocated Storage •••••••••
MARK - Mark Position of'Beap ••• · ••••••••••••••••
RELEASE - Release Allocated Memory •••••••••••••
MEMAVAIL - Determine Available Memory ••••••••••

8.3 Arithmetic Functions •••••••••••••••••••••••••••••••••••
8.3.1 ABS Compute Absolute Value •••••••••••••••••••
8.3.2 SQR Compute Square of a Number •••••••••••••••
8.3.3 SIN Trigonometric Sine •••••••••••••••••••.•••

iii

75
75
75
75
75
76
76
77
78
78
79
79

81
81
82
82
83
84
84
85
86
86
87
88
88
89
89
89
89
89
90

8.4

8.5

8.6

8.7

8.8

8.3.4 COS - Trigonometric Cosine •••••••••••••••••••••
8.3.5 ARCTAN - Trigonometric Arctangent ••••••••••••••
8.3.6 BXP - Compute Exponential of Value •••••••••••••
8.3.7 PWROPTEN - Compute Ten to a Power ••••••••••••••
8.3.8 LN - Natural Logarithm of Value ••••••••••••••••
8.3.9 SQRT - Square Root of Value ••••••••••••••••••••
Predicates or Boolean Attributes •••••••••••••••••••••••
8.4.1 ODD - Test Integer for Odd or Even •••••••••••••
8.4.2 BOLN - Determine if End of Line Read •••••••••••
8.4.3 BOP - Determine if End of File Read ••••••••••••
8.4.4 ISHIN, ISINP, ISNUM ••••••••••••••••••••••••••••
Value Conversion Punctions •••••••••••••••••••••••••••••
8.5.1 TRONC - Truncate to Nearest Integer •••••••.•••••
8.5.2 ROUND - Round to Nearest Integer •••••••••••••••
8.5.3 ORD - Convert Type to Integer Value~ •••••••••••
8.5.4 ORD4 - Convert to Long Integer •••••••••••••••••
8.5.5 CBR - Integer to Character Representation ••••••
Other Standard Punctions •••••••••••••••••••••••••••••••
8.6.1 SUCC - Determine Successor of Value ••••••••••••
8.6.2 PRBD - Determine Predecessor of Value ••••••••••
Miscellaneous Low Level Routines •••••••••••••••••••••••
8.7.1 MOVELBFT and MOVERIGBT •••••••••••••••••••••••••
8.7.2 PILLCBAR - Fill A Storage Region With A Char-'

8.7.3

8.7.4

Control
8.8.1
8.8.2
8.8.3

acter ••
SIZEOP - Determine Size of Data Blement or
~e •••
POINTER - Convert Integer Expression to
P-ointer ••
Procedures •••••••••••••••••••••••••••••••••••••
EXIT Exit from Procedure •••••••••••••••••••••
HALT Terminate Program with Return Value •••••
CALL Call up Another Program •••••••••••••••••

90
90
90
90
90
91
91
91
91
91
91
91'
92
92
92
92
93
93
93
93
93
93

94

95

95
95
95
96
96

Chapter 9 - Pasca1 Ca.pi1e T~e Options...................... 99

Appendix A - Messages fro. the Pascal Systea................ 103
A.1 Compile Time Lexical Brrors........................... 103
A.2 Compile Time Syntactic Errors......................... 103
A.3 Compile Time Semantic Errors.......................... 104
A.4 Specific Limitations of the Compiler.................. 106
A.5 Input Output Errors................................... 106
A.6 Code Generation Errors................................ 106
A.7 IORESULT Error Codes.................................. 107

Appendix B - Pasca1 Language Sumaary •••••••••••••••••••••••• 109
B.l Predefined Identifiers................................ 109
B.2 Pascal Syntax Definitions ••••••••••••••••••••••••••••• 110

Appendix C Re1ationships to ISO Pasca1 •••••••••••••••••••• 119

Appendix D Re1ationsbips to UCSD Pasca1................... 121
D.1 Differences from OCSD Pascal.......................... 121

iv

Appendix B - Data Repre.entations •••••••••••••••••••••••••••
B.l Storage Allocation ••••••••••••••••••••••••••••••••••••
B.2 Representation of Integers ••••••••••••••••••••••••••••
E.3 Representation of Reals and Doubles •••••••••••••••••••
B.4 Representation of Bxtreme Numbers •••••••••••••••••••••

E.5
E.6

B.7
E.8
E.9
B.10
E.ll

2.4.1 Hex.decimal Representation of Selected
Numbers ••

E.4.2 Deviations from the Proposed IEEE Stan-
dard •••

B.4.3 Arithmetic Operations on Extreme Values ••••••••
Representation of Sets ••••••••••••••••••••••••••••••••
Representation of Arrays ••••••••••••••••••••••••••••••
E.6.l Representation of Pointers •••••••••••••••••••••
Packing Methods •••••••••••••••••••••••••••••••••••••••
Parameter Passin9.Mechanism •••••••••••••••••••• ~ ••••••
Register Conventions •••••••••••••••••••••••••••••••••

Limitations On Size of Variables ••••••••••••••••••••••
Compiler Generated Linker Names •••••••••••••••••••••••

Appendix P -
F.l System

Operating the SVS Pascal Syat
Components •••••••••••••••••••••••••••••••••••••
Compiler Front End •••••••••••••••••••••••••••••
Code Generator •••••• ~ ••••••••••••••••••••••••••

F.2
F.3

F.l.l
F.'l.2
F.l.3
P.l.4

Linker •••
Libraries ••••••••••••••••••••••••••••••••••••••

P.l.S Error Messages •••••••••••••••••••••••••••••••••
Command Line Directives and Compiler Options ••••••••••
Linking Programs which Utilize Pascal and
~~•.......•................................
P.3.l What Language must Supply the Main Pro-

'F.3.2'
F.3.3

F.3.4

F.3.S
F.3.6

F.3.7

gram •••
Referring to the Command Line Arguments ••••••••
Dynamic Memory Allocation and Dealloca-
tion •••
Parameter Conventions ••••••••••••••••••••••••••
F.3.4.1 Calling C from Pascal •••••••••••••••••
F.3.4.2 Calling Pascal from c
F.3.4.3 Calling PO~ from Pascal •••••••••••
F.3.4.4 Calling ~ascal from PO~ •••••••••••
Run Time Libraries •••••••••••••••••••••••••••••
Opper and Lower Case External Naming Conven-
tions ••
Prepend'ed Underscore to External Names •••••••••

125
125
127
127
128

129

129
130
133
134
134
134
137
139
139
139

141
141
141
142
142
142
142
143

144

144
144

144
145
14S
145
146
147
147

147
147

Appendix G - Operating System Specific Infor.aation •••••••••• 149

- ., -

CONTENTS

Appendix G - CPM Operating Systea Specific Inforaation ••••••
G.l Compiling a Simple Program •••••••••••••••••••••••••••••
G.2 Error Message File •••••••••••••••••••••••••••••••••••••
G.3 Ulinker ••

G.3.l Ulinker Inputs ••••••••••••••••••••••••••••••••••
G.3.2 Ulinker Outputs •••••••••••••••••••••••••••••••••
G.3.3 Running Ulinker from the Command Line •••••••••••
G.3.4 Running Olinker Interactively •••••••••••••••••••
G.3.S Running Olinker with Standard Input

Redirected ••••••••••••••••••••••••••••••••••••••

149
149
150
150
150
150
152
152

152
G.3.S.l Symbol Table Information Placed in

Output File............................ 153

G.4
G.S
G.6

G.3.6 Treatment of Unresolved External Refer-
ences •••

G.3.7 Segments ••
G.3.S Errors Detected by Olinker ••••••••••••••••••••••
Linking to CPM Assembly Code •••••••••••••••••••••••••••
Argc and Argv ••
Features not Implemented Under CPM •••••••••••••••••••••

i

153
153
153
154
154
155

Chapter 1 Introduction

Chapter 1 - Introduction

Pascal is a wmodernw computer programming language designed by
Professor Niklaus Wirth (of the Eidgenossiche Technische
Bocheschule, Zurich, Switzerland) in reaction to the perceived
disorder of contemporary programming languages. Originally
intended as an aid to teaching rigorous and disciplined computer
programming, Pascal has since gained international acceptance as
a programming language for a multiplicity of applications ranging
from writing compilers (including Pascal compilers) to control­
ling a grain elevator. Pascal is not an acronym for anything.
Pascal is named after Blaise Pascal, the 17th century philosopher
and mathematician.

Pascal is one of the many derivatives of Algol-60. Algol
introduced the notion of nested control structures such·as
if •• then •• else that form the basis of today's structured program­
ming methods. In addition to the control structures, Pascal goes
one step further with the notion that 2!!! structures play at
least as important a part in rigorous programming as do control
structures. The absence of an adequate data structuring notation
was seen as Algol's most obvious deficiency.

Pascal's major contribution to the advance in programming tech­
nology is the concept of user definable data types. This pro­
vides powerful facilities for defining new data types and data
structures in terms of a few basic types.

This refer~nce manual describes the Pascal language as imple­
mented by Silicon Valley Software, Inc. Throughout, the- term
wSVS Pascal- means the Pascal implementation as described in this
reference manual.

1.1 Overview of the Pascal Language

A Pascal program consists of a series of declarations and
statements. Declarations serve to define program objects.
Statements determine actions to be performed upon such objects.
These two things, declarations and statements, serve to describe
a computer program.

- Definable Pascal objects include variables, functions, pro­
cedures, and files. Declaring an instance of an object requires
an identifier and, usually, a ~ description. An object's

Pascal Reference Manual Page 1

Introduction Chapter 1

identifier serves to identify that object so that it can be
referenced later. The type associated with an object defines its
operational characteristics, and in some cases, indicates a
referential notation.

It is important to note that all user supplied objects must be
fully described, especially as to their type. Pascal is unlike
many other programming languages in that it does not supply any
default attributes for undeclared identifiers.

One of Pascal's strongest points is the ability for users to
define new types. Pascal supplies a small number of predefined
or basic types, such as integer. Pascal then supplies notations
for defining new (user defined) types, both in terms of the basic
types, and in terms of other user defined types.

A type can be described dir~ctly in a declaration, or, a type
can be referenced by a type identifier which, in turn, must be
defined by another explicit type declaration.

In general, a Pascal object is only subject to operations that
lie inside of a domain indicated by its type. For example, most
binary operators are restricted to objects of the same type (for
instance, characters and integers cannot be added directly).
These operational constralnts are rigid, as are the rules for
type identity and assignment compatibility. Departures from the
rules have to be spelled out explicitly in terms of conversion
functions. .

, The basic data type is the scalar type, often referred to as an
enumerated type. A scalar definition indicates an ordered set of
values, where each identifier in the set stands for a specific
value.

In addition to the definable scalar types, there are six stan­
~ basic types, namely . integer, lODgin~, char(acter), rea~,
double, and Boolean types. W1th the except10n of the Boolean
type, their values are denoted by numbers or quoted characters,
instead of by identifiers •

. ~. A type may also be defined as a subrange of a scalar type by
indicating the lower and upper bounds of the subrange.

Structured types are aggregates, defined by describing the
types of their components, and by indicating a structuring
method. The structuring methods differ in the way that com­
ponents of a structured variable are selected, and the operations
-in which they can participate. Pascal provides five basic ways
to construct an aggregate object, namely array, record, set,
string, and file.

An array has components which are all of the same type. A com­
ponent is selected by a computable index. The type of such an

Page 2 Pascal Reference Manual

Chapter 1 Introduction

index must be a scalar, and is determined at the time the array
is declared.

A record has components called fields which need not be all of
the same type. A field selector for a component of a record is
an identifier that is uniquely associated with the component to
be selected. Unlike an arr.ay element index, a field selector is
not a computable quantity. The field selectors are defined at
the same time that the record is defined. A record type may
consist of several variants. This means that different variables
of the same record type may actually contain different struc­
tures. That is, the number and types of the components may differ
between different instances of the same type. The particular
variant which the specific variable assumes is indicated by a
field called the tag field, common to all variants of that
record.

A set is a homogeneous collection of elements selected from
some B!!!~. The base type might be a user defined scalar
type or a suDrange of some scalar type such as integer or char.
A Pascal set is the collection of values comprising the pewerset
of the base type. That means, the set of all subsets of that
base type.

A 8tring data type is a sequence of characters whose length can
vary dynamically during program execution. A string has a max­
imum length (its static length) which is determined when it is
defined. There are a rich set of intrinsic procedqres and func­
tions to manipulate strings.

A file is a sequence of components of the same type. ~he
sequence is normally associated with external storage or input
and output devices, so that files are the means whereby a Pascal
program communicates with the world outside of the computer.
Piles can be sequential such that there is a natural ordering I
and only one component of the file is accessible at anyone time,
or they can be random, such that any given component of the file
is accessible on demand.

Explicitly declared variables are called static, in that they
are known at compile time (lexically static). A declaration
associates an identifier with the variable. The identifier is
subsequently used to refer to that variable. In contrast to
static variables, dynamic variables are created by executable
statements. Such a dynamic creation of a variable yields a
pointer (which substitutes for an explicit declaration), ehat is
subsequently used to refer to the dynamically allocated variable.
Any given pointer variable may only assume values pointing to
variables of a specific type, and is said to be bound to that
type. A pointer may be assigned to other pointer varfibles of
the same type. Any pointer can assume the value nil - a univer­
sal pointer that is not bound to a specific type.

Pascal Reference Manual Page 3

Introduction Chapter 1

The assignment statement is th~ fundamental Pascal statement.
It assigns a newly computed value to a variable or a component of
a variable. New values are obtained by evaluating exPressions.
Expressions consist of variables, constants, sets, operators, and
functions, operating on specified objects, to produce new values.
Operands of expressions are either declared in the program, or
are standard Pascal entities. Pascal defines a fixed set' of
operators that can be considered to'define a mapping from given
operand types into result types. Operators encompass the four
groups: (1) arithmetic operators, (2) Boolean operators, (3) set
operators, and (4) relational operators.

{, A procedure statement causes execution of a designated pro­
cedure. This is known as activating or callin1 the procedure.
Assignment and procedure statements are the bas c elements of
structured statements. Structured statements specify sequential,

.selective, or repet~tive execution of, their component statements.
Sequential execution is obtained by the compound statement, Con­
ditional and selective execution by the if statement and the case
statement, Repetitive execution is specified by the wbile state­
ment, the repeat statement, or the for statement.

A .. statement can be given a name (an identifier), and subse­
quently be referenced via that name. The statement is then
called a procedure, and, its declaration is a procedure declara­
tion. A procedure declaration can itself contaIn type declara­
tions, variable declarations,. and further procedure declarations.
These subsequent declarations can only be referenced within that
procedure, and are thus said to be local to the procedure. The
program text that comprises a procedure body is called the scope
of any identifiers declared local to that procedure. Since pro­
cedures may be declared local to other procedures, scopes may be
nested. Objects declared in the main program block, not local to
any procedure, are said to be global, in that their scope is that
of the entire program.

A procedure can have a number of parameters (determined at pro­
cedure declaration time), each parameter being denoted by an
identifier called the formal parameter. When a procedure is
activated, each of the formal parameters has an actual quantity
substituted such that that quantity is accessed by reference to
the formal parameter identifier. These quantities are called
actual parameters. There are three sorts of parameters, namely
value parameters, variable-parameters, and procedure or function
parameters. A value parameter is an actual parameter which is
evaluated once. The formal parameter then repr~sents a local
variable conveniently initialized to the value of the actual
parameter. In the case·Lof a variable parameter, the actual
parameter is a variable - the formal parameter actually refer­
ences and can' alter that variable. Possible array indexes are
evaluated before activation of the procedure or function. In the
case of a procedure or function parameter, the actual parameter
is a procedure or function identifier.

Page 4 Pascal Reference Manual

Chapter 1 Introduction

Functions are declared in the same way as procedures. The
difference is that a function returns a value. Pascal functions
have intuitive similarities to the mathematical notion - a func­
tion is a computational entity that is applied to some arguments
and generates a result. Pascal functions differ from the
rigorous mathematical notion of functions in that they can have
side effects. The type of the returned value must be specified
as part of the function declaration. Functions can only return
scalar types or pointer types. A function reference must appear
in the context of an expression.

Pascal procedures and functions are inherently recursive. That
means that a procedure or function can call itself anew before
the current activation is complete. On each activation, a fresh
set of local data is created. Recursive activation can be direct
(the reference is contained within the procedure or function
itself) or indirect (the reference is from another procedure or
function which in turn is referenced from the current procedure
or function).

1.2 Metalanguage

A WmetalanguageW is a collection of notations that describe
another language. In this case the language being described is
Pascal. The metalanguage used in this manual to describe Pascal
is a modified version of the ubiquitous Backus-Naur Form, or BMP
(first used to describe Algol). A description of the
metalanguage follows.

Syntactic constructs which are enclosed between Wangle
bracketsW < and> define the basic language elements. Every
language construct should eventually be defined in terms of
basic lexical constructs defined in the remainder of this
chapter.

A construct appearing outside the angle brackets stands for
itself, that is, it is supposed to be self denoting. Such a
construct is known as a terminal Symbol. Terminal symbols
and reserved words appear in bold face text throughout this
manual.

The symbol ::- is to be read wdefined as".

The symbol •• means "through", indicating an ordered
sequence of things where only the start and end elements are
specified. (The reader is left to infer the middle ele­
ments). For example, the notation 'a' •• 'z' means "the
ordered collection starting with the letter 'a', ending with
the letter 'Zl, and containing the letters 'b', ·c' •••• ·x',
'y' in between". In other words, all the lower case
letters.

Pascal Reference Manual Page 5

Introduction Chapter 1

The Wvertical barw symbol I is read as ·orw. It separates
sequences of elements that represent a choice of one out of
lDany.

The metalanguage construct { ••• } (elements inside braces)
enclose elements which are to be repeated ·zero to many
times·. Although the braces are also used as one of the
forms of comment delimiters in Pascal, this should not cause
any ambiguity. The one case where ambiguity would occur is
in the definition of comments, and this is explicitly
pointed out at that time.

~; It is recognized that the syntactic descriptions are not com­
pletely r.igorous in that they do not cover' semantic issues. Par
example, the syntactic definition of a decimal number does not
mention how big a number can be. Where the formal descriptions
fall short they are augmented with naJ;,rative English prose.

1.3 Elementary Lexical Constructs

Pascal language lexical units - identifiers, basic symbols, and
constants are constructed from one or more (juxtaposed) ele-
ments of the alphabet described below.

1.3.1 Alphabet

. SVS Pascal uses an extended form of the ASCII character set for
all text related processing. ASCII is the American Standard Code
for Information Interchange. 'There are 128 characters in the
ASCII character set: S2 letters (upper case 'A' through 'Z', and
lower case 'a' through 'z'), 10 digits, space (often called
·blankW), 33 wcontrol codes w (such as ·carriage returnW and wline
feed W

), and 32 graphic characters such as colon, equals sign, and
so on. Pascal also allows an additional 128 values to be used.as
data values, for a total of 2S6 possible data values.

The Pascal compiler recognizes the following alphabet or char­
acter set:

<letter> : := 'A' •• • Z' , , a ' •• 'z', and , ,

<d ig it> : :. '0 I •• '9 '

<hex digit> ::- <digit> 'a' •. 'f'

<ASCII graphic characters> f:- 1 W • $, & ' () * =
+ - r · / < > ? \ [@ A -, { } 1 :]

'A' •• 'F'

Note that the definition of <letter> above includes the under­
line character.

Page 6 Pascal Reference Manual

Chapter 1 Introduction

1.3.2 Pascal Identifiers

Pascal identifiers serve to denote constants, variables, pro­
cedures, and other language objects.

<identifier> ::- <letter> { <letter> I <digit> }

A Pascal identifier must start with a letter or an underline
character. It can contain letters, digits, and the underline
character. The underline is usually used to mark off spaces in
the identifier to provide for readable and meaningful names. A
Pascal identifier may be any length, but only the first 31 char­
acters are significant to the compiler. Upper and lower "case.
letters are all wfoldedw to a single case in the compiler, making
them equivalent.

_X2S

OPanddown

Examples of Identifiers

August_1979

Tau_Epsilon_Xi

upandDOWN

Steve_and_Jeff

DragonsEgg

upANDdown

The last three identifiers in the examples are equivalent because
the compiler folds letters to a single case.

Examples ~ Invalid Identifiers

lst_character_must_be_a_letter

mustn't_have_odd_'$W[_characters_in_it

1.3.3 Numbers

Numbers are used to denote integer, real, and double data ele­
ments. Integers are assumed to be in the decimal number base,
unless designated as a hexadecimal number.

<unsigned integer> ::= <digit> {<digit>}

<unsigned real> ::-
<unsigned integer>.<unsigned integer>
<unsigned integer>.<unsigned integer>B<scale factor>
<unsigned integer>B<scale factor>
<unsigned integer>.<unsigned integer>D<scale factor>
<unsigned integer>D<scale factor>

<unsigned number> ::= <unsigned integer> I <unsigned real>

Pascal Reference Manual Page 7

Introduction

<scale factor>

<sign>

.. -.. -
: :-

Chapter 1

<unsigned integer> I <sign><unsigned integer>

+ 1 -
<hex number> ::- $<hex digit> {<hex digit>}

Hexadecimal numbers are considered unsigned, unless they are
explicitly written as 32-bit values with the most significant bit
a one. Por instance, the value $ffff is 65535 and not -1. The
value $ffffffff is a negative number.

integer numbers are represented internally in the two's comple­
ment notation. As· a consequence, there is one more negative
integer than there are positive integers.

Values of type double are designated by a letter D preceding
the exponent part of the number.

666
+99 -457
$3e8
0.0

__ 3.14159
1.23DI0

5.
.618

5.E10
2FC9
P034

1.3.4 Pascal Strings

Examples 2! Valid Numbers

! unsigned decimal integer
I} signed decimal numbers

a hexadecimal number
the real number zero

{ a double number }

Examples 2! Invalid Numbers

!
should be a digit after the point
should be a digit before the pOint
should be a digit after the point
Invalid decimal number
An identifier, not a hex number

Sequences of characters enclosed· in apostrophes are called
strings. Strings of one character are constants of type char. A
string of "n" characters, where an" is greater than one, is an
ambiguous constant that is either a string value, or is a value
of the type packed array [1 •• n] of char1 The exact type of
~uch a string constant is determined from the context in which it
appears.

A string constant which is just simply two juxtaposed apos­
trophes II represents a variable string constant of length zero.

Page 8 Pascal Reference Manual

Chapter 1 Introduction

SVS Pascal provides for entering any character value into a
string by coding its two-digit hexadecimal value preceded by a
reverse slash \. This means that non-printing characters such as
-BEL- and -ETX· may be entered into a string. A \ sign followed
by a non-hexadecimal digit is simply that character. Thus '\Y'
is equivalent to lye, '\" represents '" and '\3X' represents
',03X'. This last case is interesting in that leading zeros are

"implicit in the hexadecimal number if there is only one hexade­
cimal digit followed by a non-hexadecimal digit.

An apostrophe in a string is represented by two juxtaposed
apostrophes. The rules for reverse slash character representa­
tions above means that an apostrophe can also be represented by
the string ',", or by the string '\27'.

<string> ::- '<character> {<character>}'

<character value> ::- \<two digit hexadecimal number>

Examples of Strings

'This is a string constant'

'This string has an embedded " apostrophe'

'here is how to get a ,07 bell character in a string'

'to get a back slash, just type '"

1.3.5 Pascal Labels

A label is used to mark statements as the potential target of a
goto statement.

Pascal labels are unsigned integer constants in the range 0
9999.

<label> ::= <unsigned integer>

1.3.6 Basic Symbols

Pascal has a set of ·basic symbols" which the compiler uses for
specific purposes in the language. These basic symbols include
selected identifiers (reserved words), graphic characters, and
pairs of graphic characters. These basic symbols are used as key­
words, operators, delimiters and separators. Such symbols are
introduced throughout the body of this manual.

Pascal Reference Manual Page 9

Introduction Chapter 1

Note that user-defined identifiers may not be the same as any
Pascal reserved word.

Identifiers (reserved words) used as basic symbols' are shown in
this manual in bold faced typefont. Por example, procedure, else,
and type are Pascal reserved words.

There are two lists of basic symbols shown below. One is a
list of Pascal reserved words and the other is a list of the spe­
cial graphic symbols that Pascal uses.

Pascal Reserved Words

and end label prograa until

array file aad record uses

begin for nil repeat var

case function not set vbile

canst goto of string with

div if or then

do iapleJaentatioD otherwise to

downto in packed type

else interface procedure unit

Page 10 Pascal Reference Manual

Ch~pter 1 Introduction

Pascal Special Symbols

+ Adding Operator.

- Subtracting Operator.

* Multiplying Operator.

/ Division Operator (for real and double data types).

:- Assignment Operator •

• Terminates a Pascal Compilation UnitJ Separates

integer from fraction in a real or double

number J Indicates reference to a fi,eld of a record.

, Separates items in lists.

J Statement and Declaration Separator.

: used after case labels, statement labels, variable

and parameter descriptions.

- Relational equality operatorJ Used in constant

and type definition.

<> Relational operator for inequality.

< Relational operator for wless thanw•

<- Relational operator for wless than or equal tow.

>- Relational operator for -greater than or equal to·.

> Relational operator for Wgreater thana.

(and) encloses lists of elementsJ encloses parts of

expressions that are to be considered indivisible factors.

[and 1 encloses array subscripts

and lists of set elements.

I and } comment delimiters.

(* and *) are an alternative form of comment delimiters.

Pascal Reference Manual Page 11

Introduction Chapter 1

A pointer dereference operator.

1.3.7 Conventions for Spaces

Spaces (also called blanks) are used to separate lexical items.
Identifiers, reserved words and constants must not abut each
other, neither may they contain embedded spaces. Multiple­
character basic symbols such as <- must not contain embedded
spaces.

;: .. Other than that, spaces may be used freely (to improve program
readability for instance). They have no effect, outside of char­
acter and string constants, where a space represents itself.

1.3.8 Comments

Comments in Pascal may appear anywhere that a space may appear,
and in fact, serve the same purpose as do spaces. But note that
a comment within a string constant is, part of the string constant
and is not reall¥ a comment. Pascal comments are enclosed
between braces { ••• I or between the characters (* and *).

<comment> ::= {<any printable characters except w}_> }
I (* <any printable characters except -*)" *)

.~ In the description above, the braces enclosing the comment are
the comment delimiters, not metalanguage symbols.

For historical reasons, Pascal accepts ,two forms- of comment
delimiters. The open and close braces { } can be used where the
character set provides such. Most modern computer systems and
terminals accommodate those characters. Those systems which do
not accommodate the full ASCII character set can use the alter­
native forms of (* and *) to delimit comments.

Comments that start with one kind of opening delimiter must end
with the corresponding closing delimiter. For example:

{ this Pascal comment is enclosed in braces }

(* this comment uses the alternative delimiter *)

{ this Pascal comment would go on for ever because *)
(* does not close the~~comment. For that we need a closing brac~

Pascal comments can span multiple lines, thus providing a
"block comment" capability.

Page 12 Pascal Reference Manual

Chapter 2 Defining Data Types

.
Chapter 2 - Defining Data ~s

One of Pascal's major attractions is the ease with which users
can describe and manipulate data. An important aspect of struc­
tured programming technology is the ability to structure data as
well as control statements. This is provided in Pascal through
the notion of a data type.

A ~ defines a collection of values that a variable, constant
or expression may take on. A type has an associated size, but of
itself reserves no storage space. Storage is only reserved when
a variable is declared. as an instance of that type. Although
Pascal data types can be quite complex, they are ultimately com­
posed of simple unstructured components. An example is the
predefined type integer. Its size is two,bytes (16 bits). The
set of values it contains is -32768, ••• , -1, 0, 1 ••• , 32767.

In addition to having a size and a set of values, a type has a
collection of operations in which values of that type can parti­
cipate.

Pascal provides a numbe~ of predefined types (some of which
were described in Chapter 1), as well as the means for users to
define their own types. Section 2.2 of this chapter describes
all predefined Pascal types.

Type constructors are the means by which users can define their
own types. Structured type constructors facilitate the defini­
tion of new and larger types based upon other existing types as
components.

2.1 Defining Constants

A literal constant is a value that denotes itself - its value
is manifest from its appearance. The integer 1776 and the string
IManila' are literal constants. A constant definition introduces
an identifier that is a synonym for a constant. Using the iden­
tifier is equivalent to using the associated literal constant.
Whereas the string "3.14159" is a literal constant, an identifier
called "Pi" could be defined which is a synonym for the number.
The identifier is then known as a constant identifier, or just a

Pascal Reference Manual Page 13

Defining Data Types Chapter 2

constant.

<constant identifier> ::= <identifier>

<constant> ::= <unsigned number>
<sign> <unsigned number>

<constant identifier>
<sign> <constant identifier>

<string>

<constant definition> ::= <identifier> - <constant>,

The definition above means that a constant may be defined to be
another constant, but prohibits constant expressions.

2.1.1 Predefined Constants

Pascal provides three constants that are automatically declared
as part of the language. The three constants are:

true

false

.axint

Represents the truth val~e for a Boolean type.

Represents the falsity value for a Boolean type.

An integer constant representing the largest
integer that Pascal can store. Maxint is
currently defined as 32767.

Examples ~Constant Definitions

Liters-per_bott1e • 0.7501
Bottles-per Case • 12;
first vowe1-. 'a', I

standard bottle is 750 m1
standard case
a cbar constant

Winery - 'Chateau Montelena',
Carriage_Return = '\Od',

a string constant
carriage return character

2.2 Standard Types

SVS Pascal has eight predefined types available:

integer

Page 14

integer type represents an implementation defined
subset of the integers. It is equivalent to a
subrange defined by a type definition that looks
like:

integer = -32768 •• 32767

The integer data type therefore occupies 16 bits

Pascal Reference Manual

Chapter 2

longint

real

double

Boolean

char

Defining Data Types

of data storage.

is a long integer type. It is equivalent to a
subrange defined by a type definition that looks
like:

longint • -2147483648 ••. 2147483647

The lODgint data type therefore occupies 32 bits
of data storage.

real type is a subset of the continuum of real
numbers. Reals are represented in the "floating
point" format which consists of a fractional part
(a mantissa) and an exponent. The range of real
numbers is approximately -3.4E38 •• +3.4E38, with
a precision of approximately seven decimal
places. In addition, tne real data type can take
on "extreme values", such as plus infinity, minus
infinity, and "Not a Number" (abbreviated NaN),
which arise from overflow and division by zero.
There is a detailed discussion of extreme values
in Appendix E - "Data Representations".

double type is a double precision form of the
real data type described above, and is a subset
of the continuum of real numbers. Double numbers
are represented in the "floating point" format
which consists of a fractional part (a mantissa)
and an exponent. The range of 4oub~e numbers is
approximately -1.8D308 •• +1.8D308, with a preci­
sion of approximately 15 decimal places. In
addition, the double data type can take on
"extreme values", such as plus infinity, minus
infinity, and "Not a Number" (abbreviated NaN),
which arise from overflow and division by .zero.
There is a detailed discussion of extreme values
in Appendix E -"Data Representations·.

Boolean type represents the ordered set of ·truth
values· whose constant denotations are false and
true. Boolean is conceptually equivalent to an
ordinal type specified by a type definition that
looks like:

Boolean - (false, trqe)

character type defines the set of 256 values of
the ASCII character set, and is equivalent to the
subrange defined by a.type definition that looks
like:

char - '\0' •• '\255'

Pascal Reference Manual Page 15

Defining Data Types Chapter 2

t;est

interactive

An unpacked char data item occupies one word or
16 bits of data storage. A packed char data item
occupies one byte or 8 bits of data storage.

is equivalent to a packed file of char.

is a file type the same as that of test, except
that the standard procedures READLN and ~TELN
treat the end-of-line in a way that is more suit­
able for interactive (terminal) devices.

2.3 Defining Data Types

Pascal data types (or just tYpes for short), are used to define
sets of values that Pascal variables may .ssume and in many
cases, a notation for referencing suc!) variables. Pascal pro­
vides a small number of predefined types, reserved identifiers
for these types, and a notation for defining new types in terms
of existing types.

'~ Type declarations introduce new (user defined) types, and iden­
tifiers for those newly-declared types.

<type spec> ::- <type identifier> - <Pascal type>,

Type declarations can be used for purposes of brevity, clarity
and accuracy. Once declared, a type may be referred to elsewhere
in the program by its declared type-identifier.

2.4 Simple Types

Simple t~es are those that have neither
ponents. f?e simple types are as follows:

<simple type> ::- <scalar type>

2.4.1 Scalar Types

<standard type>
<subrange type>

<type identifier>

structure nor com-

A scalar ~ defines a well-ordered set of values by enumerat­
ing the identifiers that denote those values. A scalar type is
also known as an enumerated type or an ordinal type. An ordinal
type is represented by the ordered set of integers 0, 1, 2, 3,
••••• , with the first identifier being 0, up to the last identif-
ier which is wnw-l, where wnw is the number of identifiers in the
list.

<scalar type> ::= «identifier> {,<identifier>})

Page 16 Pascal Reference Manual

Chapter 2 Defining Data Types

Examples of Scalar !I2! Definitions

salad_greens - (Spinach, Lettuce, Coriander,
Escarole, Watercress);

bottle_sizes • (Pillette, Bottle, Magnum, Marie Jeanne,
Jeroboam, Imperial);

mealtimes • (Br~akfast, Elevenses, Lunch, AfternoonTea, Dinner);

2.4.2 Subrange Types

A sUbrange ~ represents a subrange of- values of another
scalar type. It is defined by a lower and an upper bound. The
lower bound must not be greater than the upper bound, and both
bounds must be of identical scalar types.

Values from a subrange and values from its parent range (or
another subrange of its parent range) can be assigned to each
other and can enter into the operations of assignment, com­
parison, and other binary operations.

<subr.ange type> :::.
<subrange type identifier> I <lower> •• <upper>

<lower> ::- <signed scalar constant>
<upper> ::- <signed scalar constant>

Examples 2! Subrange !I2! Definitions

small in~eger • 0 •• lSi
days_in-rear • 1 •• 366;

positive integer • 0 •• 32767;
lower case-letters • 'a' •• 'z';

- - colors • (red, orange, yellow, green, blue);
hot colors • red •• yellow;

cold-colors - green •• blue;
- hues· red •• blue;

days • (Saturday, Sunday, Monday, T, W, T, Friday);
weekdays = Monday •• Friday;
weekends • Saturday •• Sunday;

2.5 Structured TYpes

Structured tYpes represent collections of objects. They are
defined by describing their element types and indicating a struc­
turing method. These differ in the accessing mechanisms and in
the notat1on used to select elements from the collection.

Pascal Reference Manual Page 17

Defining Data Types Chapter 2

Pascal makes available five structuring methods: array, string,
set, record and file. Each type is described in the subsections
to follow.

A structured type may be given the packed storage attribute.
This -advises· the compiler that the structure is to use data
storage economically, by packing the components of the structure
densely. Packing is often achieved at a cost of larger code size
and slower execution speed. Furthermore, a component of a
packed variable can not be passed as a var parameter to a pro­
cedure or function (this restriction applies to components of
packed array of char). A full discussion on how components are
packed can be found in Appendix E - WData Representations w•

<structured type>

<unpacked structured type>

2.5.1 Array Types

::= <unpacked structured type>
I packed <unpacked structured type>

::= <array· type>
<string type>

<record type>
<set type>

<file type>

An array type is a structure consisting of a fixed number of
components, all of the same type (called the component ~).
Array elements are designated by indexes, which are varues
belonging to the so-called index~. The array type-definition
specifies the component type as well as the index type.

<array type> ::- array [<index list>] of <type>

<index list> ::= <simple type> {, <simple type>}

If Wn" index types are sp~cified, the array is an an" dimen­
sional array. Note that the above definition for an array type
means that there are two alternative ways of specifying an array.
By definition, a component of an array can be another array type.
Thus a three dimensional array could be specified as follows:

blivet·= array [1 •• 10, 11 •• 20, 21 •• 30] of blimps1

widget = array [1 •• 10] of array [11 •• 20] of
array [21 •• 30] of blimps;

The alternative forms of specifying array types are equivalent.
The first form can be thought of as a shorthand notation for the
second form. There is a similar choice of notations when speci­
fying the index elements for accessing an array component.

Page 18 Pascal Reference Manual

Chapter 2 Defining Data Types

When the index type is a subrange of the type integer, the
type:

packed array [1 •• n] of char

is a special case. Objects of this type up to a maximum length
of 2SS characters can be compared as single entities, whereas
arrays of other data types must be compared element by element.
A literal string constant can be assigned to a packed array of
char, providing that the lengths are the same. The type of a
literal string of length In', where In' is greater than 1 is com­
patible with the type:

packed array [1 •• nJ of char

Examples of Array !I2! Definitions

rows • 1 •• 37
columns • 1 •• 4J

bottle~quantities - array [bottle_sizes] of integer;

standard case • packed array [rows]
of array [columns]

""Of bot tles ;

token • packed array [1 •• 100] of char,

2.S.2 String Types

SVS Pascal has a structured type constructor called string. A
string variable has a maximum length (called its static length)
which is determined when the string is defined. A string vari­
able also has a dynamic length which can vary over the range 0
through its 'static length during execution of a program. The
standard function LENGTH can be used to determine the string's
dynamic length. The maximum static length of a string variable
is 255 characters.

Strings can be manipulated by standard Pascal syntax, or by
using string handling intrinsics, described in Chapter 8 - ·Stan­
dard Procedures and Functions·.

<string type> ::- string[<static length>]

<static length> ::= integer constant in the range 1 •• 255

A string constant which is " (two juxtaposed apostrophes)
represents a null or zero-length string.

Pascal Reference Manual Page 19

Defining Data Types

Example 2! String !I2! Definition

manila - string (100] 1
punched_card • string (80] ,

2.5.3 Record Types

Chapter 2

A record ~ is a structure consisting of a fixed number of
components that may be of different types. For each component,
or field of the record, the definition specifies both a type and
an identifier used to reference the field. The scope of these
field identifiers is the definition of the record itself. This
means tha~ the s~e field identifier may appear in more than one
record. A field identifier is also accessible within a field
designator when ~eferring to a varia~le of this record type.

Record components which are themselves records do not inherit
the packing attribute of the containing record. Each component
which is a record has independent packing attributes.

A variant record caters to the need for a record composed of a
portion which is always the same, plus one or more variants whose
layouts differ between different instances of the record.- The
specific variant that is selected in any given instance is deter­
mined by an optional tag field. Such a structure is called a
variant record or a discriminated union. The tag field is often
called a discriminant. The tag field's value. indicates which
variant the record assumes at a given time. Each variant struc­
ture is identified via a case l·abel which is a constant of the
tag field's type. Referencing a field of a varOiant that is
inconsistent with the tag fields's value is a serious programming
error.

<record type> ::- record <field list> end,
<field list> ::- <fixed part>

I <fixed part> J <variant part>
<variant part>

<fixed part> ::= <record section> {J <record section>}
<record section> ::- <field identifier list> : <type>
<field identifier list> ::- <field identifier> {,<field identifier>}

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>

<variant list> ::= <variant> {J <variant>}
<variant> ::= <case label list> : «field list»
<case label list> ::- <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::- <identifier>:

Page 20 Pascal Reference Manual

Chapter 2 Defining Data Types

Note that the <tag field> is optional in a variant record
definition.

I
Examples of Record !I2! Definitions

the example· to follow illustrates an
ordinary record called ComplexNumber,
which contains two fields, namely the
real part and the imaginary part.

ComplexNumber • record
RealPart: real,
Imaginary: real,

end,

!

I
The example below illustrates a variant
record type which has different sections
that are accessed depending on the tags.
Pirst we define an enumerated type which
is used as the variant case selector.

shapes - (rectangle, triangle, circle, polygon),

angle • -180 •• +180;

PositionRec • record

2.5.4 Set Types

x-POsition: real;
y_position: real,
case whatshape: shapes of

rectangle: (base: real;
height: real),

triangle: (base: real;
height: real;
skew: angle);

circle: (radius: real);
polygon: (SideCount: integer;

radius: real);
end;

!

A set type definition serves to define the base type that the
set is t.o use in future manipulations. Sets are limited to 2032
elements. The range of the set elements must be within the range
o •• 2031.

<set type> ::= set of <simple type>

Pascal Reference Manual Page 21

Defining Data Types Chapter 2

Examples of Set !l2! Definitions

salad_base • set of salad_greens,

dressings • set of salad_dressings,

lower_case • set of 'a' •• 'z',

2.5.5 File Types

A file ~ defines a sequence of elements. A file is usually
associatea--with external storage devices or communication dev­
ices. SVS Pascal supports the standard Pascal typed files,
untyped files and an interactive file type more suitable for ter­
minals.

When a file variable -f- with components of type -'1'" is
declared, there is an additional implied declaration of a so
called buffer variable or ·window·, also of type .'1'-. This win­
dow is referenced by the notation fA where -f" is the file vari­
able. 'This window is used in conjunction with the GET and PUT
procedures (see Chapter 6 - -Input and Output-) and serves to
append components to the file when writing, and to. access the
components when reading from the file.

<file type> ::- file of <type>
I file

SVS Pascal supports untyped files. An untyped file can be con­
sidered to not have a window variable. Such files must be.
accessed using the BLOCKREAD and BLOCKWBI'1'E functions described
in Chapter 6 - -Input and Output".

A file of the pre-defined type text can be considered to be
defined by a type definition of the form:

text • packed file of char;

Such a file is special in that the range of its components (char­
acters) are extended to include an end-of-line marker. Such a
file can then be conveniently structured into lines. The EOLN
predicate described in Chapter 8 - ·Standard Procedures and Func­
tions", covers how the end-of-line is detected.

SVS Pascal also supports an interactive file type which display
different behavior in the way that the READ, READLN and RESET

. intrinsics work. The differences are covered in Chapter 6
"Input and Output". An interactive file is more suitable for use
with interactive terminals.

Page 22 Pascal Reference Manual

Chapter 2 Defining Data Types

Examples 21 File !I2! Definitions

block_access - file;

numbers - file of integer;

Capping_Line - file of bottles;

Terminal - interactive;

legible_file • text;

2.6 Pointer Types

Explicitly declared variables are accessible by reference to
the identifier used to declare them. Such variables are accessi­
ble during the activation (scope) of the procedure in which they
are declared. These variables are called static, that is, lexi­
cally static.

Variables may also be created dynamically, in other words, with
no correlation to the program structure. These dynamic variables
are created via the procedure NEW. Since such variables do not
have an associated name, they are accessed via a pointer value
which is generated when the variable is allocated. A pointer
type is therefore a value which points to a variable of a
specific type.

_ There is a univers.l pOinter value called nil, which belongs to
any pointer type. It represents a pOinter which pOints to no
element.

<pointer type> ::- A<type identifier>

Pascal Reference Manual Page 23

Defining Data Types

Examples ~ Pointer !xp! Definitions

blackboard • record
long side: integer;

short-side: integer;
end; -

cue = Ablackboard;

TwoWay • record
next: ATwoWay;
previous: ATwoWay;
stuff: array[O •• 10] of integer;

end;

SymTree - record
name: string[3l];
LeftNode: ASymTree;
RightNode: ASymTree;

end;

2.7 Type Identity and Assignment Compatibility

Chapter 2

Pascal has strict type checking such that objects of one type
cannot be combined in operations with objects of a different
type. There are two major concepts to be described here, namely
identical types and assignment compatible types~

2.7.1 Identical Types

Two types, Tl and T2 are considered identical under the follow-
ing conditions: I

• Tl and T2 are the same type •

• Tl is declared as synonymous with another type T3, where T2 and
:T3 are identical.

Page 24 Pascal Reference Manual

Chapter 2 Defining Data Types

Examples of !IE! Identity

type_x • integer,

type_y - integer,

type_l • set of char,

type_2 • set of char,

id_type = type_l,

In "the above example, the types "type_x" and -type y" are
identical, because they are defined to be the same type, integer.
The types "type 1" and "type 2" are not identical, since they
occur in aifferent type aefinitions. The types "type_l" and
wid type" are identical however, because Wid_type" is defined to
be the same as "type_1".

2.7.2 Assignment Compatible Types

A value- of type Tl is considered to be assignment" compatible
with a variable of type T2 if any of the following conditions are
true:

• Tl and T2 are identical and do not contain a file as a com-
ponent.

•. Tl is a subrange of T2, or

• T2 is a subrange of Tl, or

• Tl and T2 are subranges of identical types.

• Tl is assignment compatibl.e wi th integer and T2 is real or
double.

• Tl and T2 are both variable string typesr

• Tl and T2 are sets of elements of types T3 and T4, and T3 is
assignment compatible to T4.

Pascal Reference Manual Page 25

Defining Data Types Chapter 2

.Page 26 Pascal Reference Manual

Chapter 3 Variables

Chapter 3 - Variables

This chapter covers two topics. First there is a discussion of
how Pascal variables are declared in terms of the data types
described in the preV10US chapter. Then there is a description
of the way that variables of different types -are accessed or
referenced.

3.1 Declaring Variables

A variable has a type and a storage area in memory. At any
given time, a variable takes on one value out of the collection
of values that define its type. A variable is initially unde-
fined, and remains so until it is initialized by an explicit
assignment.

All variables in a Pascal program must be declared explicitly
and prior to their use.

Variable declarations consist of a list of identifiers that
represent the variables, followed by the type of the variable.

<variable declaration> ::-
<identifier> {,<identifier>}: <data type>;

Examples 2! Declaring Variables

Impedance: ComplexNumber,
ChainSead: TwoWaY1

1

a record variable
another record
and another TreeTop: SymTree,

First, Middle, Last:
ValueFile: Numbers:
CurChar: cbar1
Omega: real:

Pascal Reference Manual

integef: {plain integers
a file variable

{ a character variable
{ a real variable

}
}

I
}

Page 27

Variables Chapter 3

3.2 Predeclared Variables

SVS Pascal has five pre-declared variables. These are:

input, ou~ut, and stderr

argc and argv

default files associated with the standard input,
the standard output, and the standard error out­
put file, respectively.

On those operating systems which do not have a
standard error output file, the file stderr is
directed to the same place as the output file.

are variables which provide acce~s to the command
line that invoked the current Pascal program.

These pre-declared variables are covered in detail in Chapter 7
- ·Program Structurew•

3.3 Establishing Variables

Establishing a variable is a process that involves:

1. determination of the variable's type.

~2. allocation of storage for the values that the variable takes
on.

Explicitly declared variables are automatically established on
each entry to the procedure or function block in which they are
declared. -Global- variables (declared in the outermost block)
are established once and only once.

Formal parameters of procedures or functions are automatically
established on each activation of that procedure or function.

" So-called -dynamic· variables are explicitly established by
storage management operations (for type determination and storage
allocation), and by assignment operations (for initialization).

3.4 Lifetimes of Variables

The lifetime of a local ~ariab1e is that of the block in which
it is declared. Allocation occurs on each entry to that block,
and de-allocation occurs on each exit from that block.

Page 28 Pascal Reference Manual

Chapter 3 Variables

3.4.1 Global Variables

Global variables are those variables declared in the outermost
block (in the prograa block). The lifetime of such global vari­
ables is the lifetime of the ~ntire program.

3.4.2 Lifetime of Pormal Parameters

The lifetime of a formal parameter is the lifetime of the pro­
cedure or function which that formal parameter is a part of. The
formal parameter becomes established upon each entry to the pro­
cedure or function, and becomes undefined upon exit from the pro­
cedure or function.

3.4.3 Lifetime of Dynamic Variables

Dynamic variables are established (but not initialized) by an
explicit allocation operation (such as NEW). Dynamic variables
become undefined when they are explicitly freed, or when no
pointer variable points to them. Note that generally a pointer
value has a finite lifetime which may be different from that of
the pointer variable that can point to it. Local variables
beronging to procedures and functions, cease to exist on exit
from the block in which they were declared. Dynamic variables,
on the other hand, cease to exist when they are explicitly freed
or when no pointer variable points to them. Attempts to refer­
ence non-existent variables beyond their lifetimes is a program­
ming exror, usually with undesirable results from the
programmer's viewpoint.

3.5 Referencing or Accessing Variables

The method by which a variable or a component of a variable is
accessed differs depending on the structuring method used in the
type definition for that variable. There are three basic access
methods:

1. An entire variable is a variable of a simple type (no
structure). An entire variable is referenced simply by giv­
ing its name ..

2. A component variable is a variable of array, record or file
type. The access methods are explained below.

3. A referenced variable is accessed through a pointer.

<variable> ::= <entire variable>

I <component variable>
<referenced variable>

Pascal Reference Manual Page 29

Variables . Chapter 3

3.5.1 Entire Variables

An entire variable is denoted by its identifier. Since an
entire variable has no structure, its identifier alone is enough
to reference it.

<entire variable> ::a <variable identifier>

Examples 2! Entire Variable References

ChickenTeeth
GiddyGoatHorns
First

3.5.2 Component Variables

A component of a variable is denoted by the variable followed
by some selector that specifies the component. The form of the
selector depends on the structuring method used to access the
variable.

<component variable> ::=-

I
<indexed variable>

<field designator>
<file buffer>

3.5.2.1 Referencing Indexed Variables

A component of an wnw-dimensional array variable is denoted by
the -variable followed by wnw index expressions. An entire array
(which can be a component) of an array can be denoted by g1v1ng
wnw-l index expressions. In such a case, the entire last dimen­
sion of the array is indicated. This occurs when an entire array
or an entire subarray is passed as an actual parameter to a pro­
cedure or function.

~indexed variable> ::a <array variable> <subscript list>

<subscript list> ::= [<expression> {,<expression>} 1
I [<expression>] {[<expression> 1

The {,<expression>} in the definition above implies that there
are as many expressions in the subscript list as there are dimen­
sions in the array variable. Just as in defining an array type,
there are. two alternative methods for referencing an array vari­
able. Either the subscripts can be listed, separated by commas,
inside the brackets, or there can be a list of bracketed sub­
script expressions.

Page 30 Pascal Reference Manual

Chapter 3 Variables·

The index expression types must correspond with the index types
declared in the array type definition.

Examples ~ Array Variable References

ladder [top]

stairs [flight] (step)

Footing[Left, Center, Right]

3.5.2.2 Referencing Strings

String variables can be referenced as singie entities (when the
entire string is being operated upon) or single characters from a
string can be referenced just like a packed array of cbar.
Values can be assigned to string variables using assignment
statements, string intrinsics or the READ or READLN procedure.
String indexing is based from one (1) 80 that the expression on
the string ·s·: .

- s [LENGTH (s)]

correctly yields the last character in the string. The 'drnamic
length of the string may be addressed as the zeroth element of
the string. Thus the statement 's(Ol :a chr(3)' would set the
dynamic length of the string to 3. The length must never be set
to a value greater than the maximum declared for that string! It
is an error to reference a string ·s· with an index less than
zero or greater than LENGTH(s).

3.5.2.3 Referencing Pields of Records

A component of a record variable is denoted by the record vari­
able followed by the component's field identifier. The field
identifiers are separated by periods.

<field designator>. ::- <record variable>.<field identifier>

It is an error zero (which is not flagged by the Pascal system)
to reference a field of a variant record that is inconsistent
with the tag field for that variant.

Pascal Reference Manual Page 31

Variables Chapter 3

Examples 2£ Accessing Pields in Record Variables

{ The first example is a simple field reference }
impedance.RealPart

{ The second example illustrates a reference
to a field of an array of records }

bottles[BurgundyType].Loire

{ The third example illustrates a
deeply nested field reference

King_Caractacus.Court.Ladies.Paces.Noses

3.5.2.4 Referencing Pile Buffers

}.

At any time, only. the one component determined by the current
file position (read/write head) is directly accessible. This
component is called the ·current file component·, and is
represented by the file's buffer variable.

<file buffer> ::- <file variable>A

<file variable> ::- <variable>

3.5.3 Pointer Referenced Variables

<referenced variable> ::- <pointer variable>A

<pointer variable> ::- <variable>

If .p" is a variable which is a pointer to type "T", "p" means
the pointer variable and its pointer value, whereas .pAW means
the variable of type "TW that .p. references.

Examples of Pointer Reference

TreeTop.LeftNodeA { Left Node in the tree variable }

cueA.longside {gets Long Side of Blackboard }

Page 32 Pascal Reference Manual

Chapter 4 Expressions

Chapter 4 - BxpressioDS

An expression is a construct which defines the rules of compu­
tation for creating a value by performing operations (specified
by operators) on operands (specified by variables, constants, and
function references). These newly-created values can then be
used in assignment statements or can be used (in conditional
expressions) to control subsequent program actions.

<unsigned constant> ::- <unsigned number>
<string>

<constant identifier>
nil

<factor> ::- <variable>

<set constructor>
<element>

<term>

::-

::-

<unsigned constant>"
<function designator>

<set constructor>
«expression»

Dot <factor>

[<element> {,<element>}]
<expression>

<expression> •• <expression>

<factor>
I <term> <multiplying operator> <factor>

<simple expr> ::= <term>

I <simple expr> <adding operator> <term>
<adding operator> <term>

<expression> ::­
<simple expr>

<simple expr> <relational operator> <simple expr>

4.1 Operators in Expressions

Operator"s perform operations on a value or a pair of values to
produce" a new value. Most operators are defined only on basic
types, though some are defined on most types. The following sub­
sections define the applicable range, as well as the result, of
the defined operators.

Pascal Reference Manual Page 33

Expressions Chapter 4

With the exception of the @ operator, an operation on a vari­
able or field which has an undefined value, produces an undefined
result.

4.2 Address Evaluation Qperator

The • operator generates the address of a variable, user pro­
cedure or user function. The type of the resulting expression is
the same as the type of the value nil. Thus an address can be
assigned to any pointer variable.

The precedence of the I operator is above that of all other
gperators, but below that of array indexing and record field
referencing. It can be applied to unpacked fields.of records and
unpacked array elements and to the dynamic variables pointed to
by a pointer. It cannot be applied to components of any packed
structure.

Examples 2! ~ @ Operator

generates the address of a
-Uncle Bill-. -

ITypeWheel[tildel

variable named

generates the address of. the Wtilde"th element of
the array -TypeWheel".

4.3 NOT Operator

The not operator applies to factors of type B001ean or integer.

When applied to type Boolean, the meaning is negation.
is, DOt true = false, and not fa1se = true.

That

When applied to type integer, the not operator negates all the
bits in the value. That is, it performs a one's complement nega­
tion of each bit in the operand. The result of applying the not
operator to a value of type integer is type integer.

4.4 Multiplying Operators

The multiplying operators have the next highest precedence
after the Dot operator.

<multiplying operator> ::=.* / div

The following table shows the multiplying operators,
missible types of their operands, and the result types.

and

the per­
Operands

Page 34 Pascal Reference Manual

Chapter 4 Expressions

of the * (multiplication) and / (division) operators can be mixed
integer, real, and doable data types.

If both operands of the * operator are of type integer, the
result is of type integer.

.
If either operand is of type doable, the other operand is con­

verted to type doable, and the result is of type double. Other­
wise, if either operand is of type real, the result is of type
real. The result of the / operator is either real, or in the
case when one or both operands are of type doable, the result is
of type doable.

+--~--~---~+------------------+----------------+------------~--+ I Operator I Operation Operands Result
+----------+----~-------------+----------------+---------------+

* multiplication

set intersection

real, double,
or integer

any set type T

real, doable,
or integer

T

+----------+------------------+~---------------+---------------+
/ I division I real, double,

or integer I real
doable

+----------+------------------+----------------+---------------+ div I division with I integer I integer
truncation

+----------+------------------+----------------+---------------+ I aod I modulus I integer I integer I
+----------+------------------+----------------+--------------~+ logical and

and
bitwise and

Boolean'

integer

'Boolean

integer
+----------+----------------~-+----------------+--------------~+

The div operator applies to values of type integer only and
represents truncating division. div always truncates towards
zero. It is an error to divide by zero. If the signs of the
operands are the same, the result is positive, if the signs are
different, the result is negative.

The .ad operator defines the modulus operation between two.
values of type integer. It is an error if the right operand of
mod is zero. The interpretation of .ad is:

a .ad b = a - (a div b) * b

When applied to operands of type Boolean, the and operator pro­
duces a result of type Boolean as one might expect. When applied
to operands of type integer however, the and operator performs a
bitwise logical and on the operands and produces a result of type
integer.

Pascal Reference Manual Page 35

Expressions Chapter 4

4.5 Adding Operators

The adding operators have the next highest precedence after the
multiplying operators.

<adding operator> ::- + or

The following table shows the adding operators, their permissi­
ble operand types, and the result types. Operands of the +
(addition) and - subtraction operators can be mixed integer,
real, and double data data types.

~ If both operands of the + or - operator are of type integer,
the result is of type integer.

If either operand is of type double, the other operand is con­
verted to type double, and the result is also of type double.
Otherwise, if either operand is of type real, the result is also
of type real.

+~---------+--~-~-----------+----------------+---------------+
.1 operator I operation I operand types I result type I
+-~--------+----------------+-~--------------+-----~---------+ addition

+

set union

real, double,
or integer

any set type T

real, double,
or integer

T

+~-----~---+----------------+----------------+---------------+ subtraction

set difference

real., double,
or integer

any set type T

real, double,
or integer

T

+~~--------+----------------+----------------+---------------+ logical or Boolean Boolean
or

bitwise or integer integer
+----------+----------------+----------------+---------------+

~ When applied to operands of type Boolean, the or operator pro­
duces a result of type Boolean as one might expect. When applied
to operands of type integer however, the or operator performs a
bitwise logical or on the operands and produces a result of type
integer.

4.6 Sign Operators

The "+" and "-" signs can be used as unary operators. They
apply to integer, real, and double data types only. Applying a
unary operator to a data type produces a result which is the same
data type as that of the operand.

Page 36 Pascal Reference Manual

Chapter ~ Expressions

<sign operator> ::- + I -
The table below shows the sign operators, their permissible

operand types and their result types.

+~~~-------+-----------+---~-----------+---------------+ I operator I operation I operand types I result type
+--~-------+-----------+---------------+---------------+
I + I identity I real, double, I real, double, I

or integer or integer
+----------+-----------+---------------+---------------+ I negation

I

real, double, I real, double, I
or integer or iD~eger

+----~-----+-----------+---------------+---------------+

4.7 Relational Operators

The following table shows the relational operators, their per­
missible operand types, and the result type.

+----------+--------------------------------+-~--~--------+ I operator I operand types I result type I
+----------+--------------------------------+--~----------+

- <>
any scalar or subrange type

set type
pointer type

packed array of char
string

Boolean

+----------+-~------------------------------+-------------+ any scalar or subrange type
set type

packed array of char
string

Boolean

+---~------+-------------~------------~-----+-------------+ < > any scalar or subrange type
packed array of cbar

sui~
Boolean

+--~----~--+--------------------------~---~-+-------------+ in
I

any scalar or subrange type I Boolean
and its set type respectively. I

+----------+--------------------------------+-------------+
Note that all scalar types define ordered sets of values.

4.7.1 Comparison of Scalars

All six relational operators «, <-, >, >-, - and <» are
defined between operands of the same scalar type.

Pascal Reference Manual Page 37

Expressions Chapter 4

For operands of type integer, real, or double, the operators
have their usual meaning. Operands of integer, real, and double
data types are considered to form a hierarchy, with the integer
data type at the bottom of the pecking order, the double data
type at the top, and the ,real data type in the middle. If the
operands are of different numeric types, the lower type of
operand is converted (or promoted) to the type of the other
operand prior to the comparison. For example, in the expression:

integer type < double type

the integer operand is converted to double before the comparison
is made.

For operands of type Boolean the relation false < true defines
the ordering.

For operands of type char the relatlon "a" 22 "b" holds if and
only if the relation ORD(a) Q2 ORD(b) , holds, where op denotes
any of the six comparison operators and ord is the mapping func­
tion from type char to type integer defined by the ASCII collat­
ing sequence.

For operands of any ordinal type wTw, Wa" - "b" if and on.ly if,
"aW and "b" are the same valueJ wa < b" if and only if, "a" pre­
cedes "b" in the ordered list of values that define "T".

4.7.2 Comparison of Booleans

If "p. and "q" are Boolean expressions, "p - q" means
equivalence, and "p <- q" means implication of "q" by "pn.

4.7.3 Direct Pointer Comparison

Two direct pointers can be compared if they are pointers to
identical types. To compare pointers of differing types, take
their ORO. (See Chapter 8 "Standard Procedures and Func­
tions").

Pointers may be compared for equality or inequality only.

Two pointers with the value nil are always equal.

4.7.4 String Comparison

All six relational operators may be applied to string operands.
The relational operators compare both packed array of char and
string values.

Page 38 Pascal Reference Manual

Chapter 4 Expressions

In the case of a packed array of char, both operands must be
the same size. The maximum length of string comparison of values
of packed array of char is 255 characters. That is, a variable
whose declaration is like:

var
strtype: packed array [1 •• 255) of char,

is the largest string variable that can be compared in one opera­
tion.

In the case of string comparison, the operands may be of dif­
ferent sizes. If the operands are of different sizes, trailing
spaces are significant. That is, the string

, AI

compares less than the string

'A '

Comparison of string operands or packed array of char operands
denotes alp~abetical ordering according to the ASCII character
set collating sequence.

Note that because a string data type is represented differently
from a packed array of char, they cannot be compared with each
other. On the other hand, a character string constant is of·
ambiguous type, and so a string constant can be compared either
to a string operand or to a packed array of char operand, because
the type of the string constant is converted to the type of the
other operand in comparison operations.

4.7.5 Set Comparison

The relation ·scalar value· in ·some set· is true if the
·scalar value" is a member of the ·some set". The base type of
the set-must be the same as,·o~ a subrange of, the type of the
scalar.

The set operations:= (identical to), and <> (different from),
<- (is included in), and >= (includes) are defined between two
set values of the same base type. For two sets ·Sl" and ·S2" of
the same base type:

51 := 52

91 <> S2

51 <- 52

is true if all members of Sl are contained in 52,
and all members of S2 are contained in Sl.

is true when Sl = S2 is false.

is true if all members of S1 are also members of
S2.

Pascal Refetence Manual Page 39

Expressions Chapter 4

Sl >- S2 is true if all members of S2 are also members of
Sl.

4.7.6 Non-Comparable Types

Certain Pascal types cannot be compared. These include files,
arrays, variant records, and records containing fields of non­
comparable types. The exception to this rule is that packed
array of char operands can be compared if they are the same size.

4.8 Out of Range Values

It is possible that expression evaluation can yield results
which are outside of the range of values for a given data type.
Expressions involving the real and dou~le data types can generate
several different extreme values. #' •

The extreme value of positive or negative infinity is a result
either of overflow, or by dividing a non-zero value by 0.0.

Underflow generates a value of zero.

Dividing 0.0 by 0.0 generates a value of Not a Number (NaN).

Appendix E - -Data Representations W contains a description of
the extreme values and their behavior -in comparisons.

4.9 Order of Evaluation in Expressions

The rules of composition for expressions specify operator pre­
cedence according to five operator classes. The precedence is
as follows:

1. the waddress ofw • operator has the highest precedence.

2. then the not operator.

3. then the multiplying operators.

4. then the adding operators.

5. the lowest precedence is the relational operators •

. Operators at the same precedence level are applied left to
right, except where parentheses are used to override the normal
order of evaluation. The order in which operators are applied is
according to the rules above. . The precise order of operand
evaluation is undefined. Some operands may not be evaluated at
all, if the value of the expression can be determined without the
value of that particular operand.

Page 40 Pascal Reference Manual

Chapter 4 Expressions

4.10 Compile Time Constant ExPressions

The Pascal compiler eval~ates certain types of integer and
Boolean constant express10ns at compile time. integer expres­
sions consisting of constant expression operands and the follow­
ing operators are folded into constant expressions:

Binary Operators. <> + *
Unary Operators

Boolean expressions consisting of constant expression operands
and the following operators are fold~d into ~onstant expressions:

Binary Operators - <> and or
Unary Operators DOt

4.10.1 Dead Code Elimination

The Pascal compiler recognizes code of the form:

if FALSE then
statement 1

else -
statement 2

and generates code for statement 2 only. Similarly, if the
Boolean expression is TRUE, only statement 1 is generated. Con­
stant expressions which fold into constants are recognized as
constant TRUE or PALSE. This feature facilitates keeping several
versions of similar source in the same file without adding extra
generated code after the code is compiled.

Example of Conditional Compilation

canst
version = 101

if version. 7 then
writeln('Too oldl')

else
writeln('Not too oldl')1

The code fragment above, with the constant ·version" set equal to
10, has the same effect as a code fragment like this:

write1n('Not too oldl')1

Pascal Reference Manual Page 41

Expressions Chapter 4"

page 42 Pascal Reference Manual

Chapter 5 Statements

Cbap~er S - Stata.ents

Statements denote algorithmic actions, and are said to be exe­
cutable. Statements define the actions that are to be performed
on program objects that were introduced via type and variable
declarations, discussed earlier in this manual.

5.1 Statement Labels

A statement can be labelled by preceding itfwith an unsigned
integer constant in the range 0 •• 9999, followed by a colon.
The statement can then be explicitly referred to by a go~o state­
ment.

5.1.1 Scope Of Statement Labels

The scope of a statement label is the body of the procedure or
function in which the label is declared and all .nested procedures
and functions. This means that a go~o statement cannot transfer
control into a procedure or function body unless that procedure
or function has been activated.

5.2 Assignment Statements

The assignment statement replaces the current value of a vari­
able with.' a new value derived from expression evaluation, or
defines the value that a function variable returns.

<assignment statement> ::-
<variable> :- <expression>

I <function identifier> := <expression>

5.2.1 Assignments to Variables and Functions

The part to the left of the assignment symbol, :=, is evaluated
to obtain a reference to some variable. The expression on the
right side is evaluated to obtain a value. The referenced
variable's current value is discarded and replaced with the
expression's value.

Pascal Reference Manual Page 43

Statements Chapter 5

The variable on the left hand side of an assignment statement
must be assignment compatible (see Chapter 2 - -Defining Data
Types·) with the type of the expression on the right hand side.

' .. A string constant may be assigned to a variable of type packed
array [1 •• n] of char, providing that the string value is the same
length as the array object. The maximum length of such an
assignment is 255 characters.

Examples ~ Assignment Statements

x := 5 ! y := x * 10 + 18
ch := CBR(lO)
rope := 'hemp'

simple assignment to variable I
assignment of expression
assignment of function value
string assignment

poke := POINTER ($200)
poke A := 0 { clobber the system vector }

5.3 Procedure Reference Statement

A procedure reference statement creates an environment for exe­
cution of the specified procedure and transfers control to that
procedure.

<procedure call 'statement> ::-
<procedure identifier><actual parameter list>

I <procedure identifier>

<actual parameter list> ::=
«actual parameter> {,<actual parameter>})

<actual parameter> ::= <expression>

I <procedure identifier>
<function identifier>

The actual parameter list must be compatible with the formal
parameter list of the procedure. An actual parameter corresponds
to the formal parameter which occupies the same ordinal position
in the formal parameter list.

Only formal parameters that are value parameters can have an
actual parameter which is an <expression>. Value parameters must
be assignment compatible with the type of the formal parameter.

~-

-0 Formal parameters that are var parameters must have actual
parameters that are identical types. In addition, the actual
parameters must not be components of packed objects.

Page 44 Pascal Reference Manual

Chapter 5 Statements

5.4 Structured Statements

Structured statements are constructs composed of statement
lists. They provide scope control, selective execution, or
repetitive execution of the constituent statement lists.

<structured statement> ::- <begin statement>
<if statement>

<while statement>
<repeat statement>

<for statement>
<case statement>

5.4.1 BEGIN •• END - Compound Statements

A begin statement specifies execution of a statement list.
Exit from the statement list is either through completing execu­
tion of the last statement in the statement list, or through
explicit transfer of control.

<begin statement> ::- begin <statement list> end

<statement list> ::- <statement> {J <statement>}

5.4.2 IP •• THEN •• ELSE Statements

The if statement specifies that another statement be executed
(or not) depending on the truth (or falsity) of a conditional
expression. If the value of the conditional expression is true,
the statement is executed. If the value of the conditional
expression is false, either no subsequent statement is executed,
or the statement following an else clause .is executed.

«f statement> ::-
if <Boolean expression> then <statement>

if <Boolean expression> then <statement> else <statement>

Because Pascal statements are open forms, it is possible to
construct a chain of else if clauses to select ·one out of many
different conditions w•

In common with similar languages, Pascal has what is called the
Wdangling else w problem. If an if statement contains another if
statement as a subordinate, when an else clause is encountered,
which if statement does the else clause apply to? In Pascal, the
else clause matches the most recent if statement that does not
have an else clause. One of the examples below clarifies this
point.

Pascal Reference Manual Page 45

Statements

Examples of If Statements

{
if day in [Monday

Get up and go
else - - -

example of a simple if statement
•• Friday] then

Rollover

{ an if statement with'a
compound block }

if sun > yardarm then
begin

make cocktails1
prepare snacks1
relax -.

eDd
e1se

flOCJ_on

{ an else if chain
if weather. raining theD

sleep in
else if- lawn • wet then

clip the hedge
,else if grass > 6 then

mow the lawn
else - -

turn_on_lawn_sprinklers

{ A dangling else clause }
if condition 1 then f 213 }

if condition 2 then
if condition 3 then

••••• statements •••••
else { goes with statement 1

else
••••• statements •••••

{ goes with statement 2
••••• statements •••••

else { goes with statement 3
••••• statements •••••

5.4.3 CASE Statements

}

}

}

}

Chapter 5

}

A case statement selects. one of its component statements
depending on the value of an expression. The expression is
called the case selector. Each of the component statements is
,tagged with one or more simple scalar constants • The tags are
called selection specifications «selection specs> for short).
If the value of the selector matches that of one of the statement
tags, that statement is executed. If the selector value matches
none of the statement selection specifications, the statement (if

Page 46 Pascal Reference Manual

Chapter 5 Statements

any) following an otherwise symbol is executed.

Note that this Pascal implementation differs from the ISO stan­
dard in the provision of the otherwise clause. ISO Pascal has no
provision for -what to do if none of the case selectors match the
selector expression-. Strict Pascal considers this situation a
run-time error.

<case statement> ::~ case <expression> of <cases>
{otherwise: <statement>} end

<cases> ::- <a case> {<a case>}
<a case> ::-

<selection spec> {, <selection spec>} : <statement>,

<selection spec> ::- <scalar constant>

Case selectors and the statement tags must be non-real scalar
types. In addition, the case selectors and the statement tags
must be of assignment compatible types.

It must be stressed that the selection specifications which the
component statements. are tagged with are not labels in the Pascal
sense, and as such, cannot be used as the~rget of a goto state­
ment, and neither should they appear in any label declaration
part.

Examples of £!!! Statements

case wine_type of

Champagne:
Anything_goes,

Cabernet:
Roast_Lamb,

Chardonnay:
Veal_Piccata,

otherwise:
Hamburger,

end 1

5.4.4 WHILE •• DO Statements

A wbile statement controls
statement until evaluation
false.

Pascal Reference Manual

repetitive execution of another
of a Boolean expression becomes

Page 47

Statements Chapter 5

<while statement> ::- while <expression> do <statement>

The <statement> is repeated while the value of <expression>
remains true. The <expression> must be of type Boolean. When
<expression> becomes false, control passes to the statement after
the vbile statement. If the value of <expression> is false at
the time that the while statement is encountered for the first
time, the subordinate statement is never executed at all. Thus
the vbile statement provides a means to -do nothing gracefully-.
Contrast this behavior with the ~epeat statement described below.

Bxample of WHILE Statement

wbile bytes to go > 0 do
begin --

if bytes to go <- BlockSize then
TransferLength := bytes_to_go

else
TransferLength :- BlockSize,

DoTransfer;
bytes to go :- bytes to go - TransferLength,
BlockNumber :- BlockNumber + 1

end

5.4.5 REPEAT •• UNTIL Statements

The repeat statement controls the repetitive execution of a
list of statements. The statements are executed until the condi­
tion at the end of the statement evaluates to true. The form of
a repeat statement is:

<repeat statement> ::= repeat <statement list> until <expression>

The expression controlling repetition must be of type Boolean.
The statement between the repeat and until symbols is executed
repeatedly until the expression becomes true. Note that the body
of a repeat statement is always executed at least once, since the
termination test is at the end. Contrast this behavior with the
while statement described in the previous subsection.

Example of Repeat Statement

repeat
consume glassfull;
refill glass;

until (Champagne_volume <- 0) or (Consumer • Blotto);

Page 48 Pascal Reference Manual

Chapter 5 Statements

5.4.6 FOR •• DO Statements

The for statement executes its
edly, while a progression of
variable of the for statement.

subordinate statement repeat­
values is assigned to a control

<for statement> ::-
for <control variable> := <for list> do <statement>

<for list> ::- <initial value> to <final value>
I <initial value> downto <final value>

<control variable> ::- <identifier>

<initial value> ::- <expression>
<final value> ::- <expression>

The control variable is set to the initial value. After every
iteration the control variable is either incremented (to) or
decremented (downto) until its value is greater than or less than
the final value.

The control variable, the initial value, and the final value,
must all be of the same scalar type or a subrange of that scalar
type. No part of the statement controlled by the for statement
may alter the control variable during the execution of the for
statement.

Neither the control variable, nor the initial value, nor the
final value, may be of type real. The control variable must be
local to the procedure or function that contains the for state­
ment.

The value of the control variable is undefined on normal termi­
nation from the for statement. If the for statement is exited
prematurely (via a goto statement), the value of the control
variable is defined.

Examples of the !Q! Statement

{ initialize an array to zero }
for index := 1 to 100 do

row [index] := a
{ scan from the end of an array }

for where := 200 downto 1 do
if what [where] = thing then

foundit := true

Pascal Reference Manual Page 49

Statements Chapter 5

5.5 The WITH Statement

The wi~ statement provides a ·shorthand- notation for refer­
ring to fields in a record. The with statement effectively
·opens the scope· that contains field identifiers of a specified
record variable.

<with statement> ::-
with <record variable> {,<record variable>}

do <statement>

Within the body of the with statement, fields of the specified
record variable do not need to be qualified .by the name of the
record.

If there is a local variable ·x· and a field ·x- in a record
·r· which is the subject of a with statement, the statement:

with r do

·hides· the local variable ·x· until the end of the with state­
ment.

A with statement which has multiple <record variable> fields is
interpreted as nested with statements. The statement:

with record_l, record_2, record_3 do

is equivalent to the statement:

with record 1 do
with record 2 do

with record 3 do
; •••• statement • • • • •

Page 50 Pascal Reference Manual

Chapter 5

Example of ~ !!I! Statement

var
TreeTop: SymTree1

with TreeTop do
begin

LeftNode := nil;
RightNode :- nil

end {with}

Statements

This is a shorthand for the following statements

TreeTop.LeftNode :- nil;
TreeTop.RightNode :- nil

5.6 The GOTO Statement

The goto statement name~ as its successor, a labelled statement
designated by a label.

<goto statement> ::a goto <label>

The following should be noted concerning the goto statement and
the label that it designates:

The scope of a label is the procedure in which that label is
defined and all nested procedures and functions. Therefore it is
not possible (nor valid) to jump into a procedure when no activa­
tion of the procedure exists.

Every label in a procedure must be declared in the label
declaration part at the head of the procedure.

Example of ~ Statement

if status = error
goto 9999

Pascal Reference Manual

then
{ exit to end of procedure }

Page 51

Statements Chapter 5

Page 52 Pascal Reference Manual

Chapter 6 Input and Output

Chapter 6 - Input and Output

Input and Output facilitie~ provide the means whereby a Pascal
program can communicate with the world outside .the computer sys-
tem on which it runs.

SVS Pascal supports the input-output facilities as defined by
standard Pascal, and additionally supports untyped (block access)
files, interactive files, random access to typed files and unit
input-output (direct access to the devices on the system). ----

6.1 General Pile Handling Procedures

This Section covers the standard Pascal procedures for handling
files of any type. The four supplied procedures are GET, PUT,
RESET and REWRITE.

6.1.1 The File Buffer Variable

A Pascal-file of some_type is a seguentia~ file its com-
ponents appear in strict sequential order (ignore the SEEK pro­
cedure for the duration of this discussion). Writing implies
appending a component to the end of the file. Reading implies
that the next component in sequence is obtained from the file.
The following discussion applies only to typed files.

Associated with each typed file variable there is an implicit
"buffer variable", often called the file "window". The buffer
variable can be thought of as a place holder where the current
file component is held. The buffer variable holds the next
available component when ·reading. When writing, it holds the
component that will be appended to the file by a PUT procedure
call.

For a given file variable "f", the buffer variable is refer­
enced by the notation "fAft. Consider the following declarations:

Pascal Reference Manual Page 53

Input and Output·

type

var

whammo • file of gobion;

frammis: whammo7
Curcomp: gobion;

Chapter 6

When the file ·frammis" is opened for reading via the RESET
procedure call, the first component of the file is in the buffer
variable. An assignment statement of the form:

CurComp :- frammisA;

assigns the contents of the buffer variable to the variable ·Cur­
Comp·. The contents of the buffer variable then become unde­
fined. The next component from the ~ile is moved into the buffer
variable by a GET procedure call.

When the file ·frammis· is opened for writing via
procedure call, the buffer variable is undefined.
of the form:

frammisA := CurComp;

the REWRITE
An assignment

assigns the value of the variable ·CurComp· to the buffer vari­
able. A subsequent POT procedure call appends the contents of
the buffer variable to the file ·frammis". The contents of the
buffer variable become undefined until another assignment defines
it.

For files of type interactive the handling of the buffer vari­
able is different. In standard Pascal, when a file is RESET, the
first element of the file is read and placed in the file buffer
variable. This means that the system would expect the user to
type a charac~er at the terminal, else the system would "hang".
Thus a RESET on an interactive file does not perform an immediate
GET. This affects the way that EOLN functions. When an end-of­
line is read, EOLN becomes true and the character read is a
space.

6.1.2 GET - Get Component from File

The procedure GET obtains' the next element from a file (assum­
ing there is a next element to be obtained). A call on the GET
procedure of the form:

GET (file)

advances the current file position to the next component in the
file. The value of this component is then assigned to the buffer
variable file"'.

Page 54 Pascal Reference Manual

Chapter 6 Input and Output

If there was no -next component- in the file, the value of the
buffer variable is undefined and the predicate EOF(file) becomes
true.

If the predicate EOF(file) is already true, a GET (file) .(in
other words, trying to read past end-of-file) has an undefined
result.

6.1.3 POT - Append Component to a Pile

A call on the PUT procedure of the form:

POT (file)"

appends the value of the buffer variable file A to the file
-file-. The value'of file A becomes undefined after the call to
PUT. The predicate EOF(file) becomes true after the PUT.

If the predicate EOP(file) was false before the call to PUT (in
other words, there were intervening GET's on the file), the call
to POT has an undefined result.

6.1.4 RESET - Open an Existing Pile

A call to the RESET procedure of the form:

RESET(file, string [, buffering option])

opens the file named 'string' and positions it at the beginning
of the file. If the file variable had previously been opened,
access to the previous file is lost, and no close or buffer
flushing is done. For a 'proper' closing of any opened file, a
specific call to CLOSE must be done. If the file is not empty,
the first element of the file is assigned to the buffer variable
fileA and the predicate EOF(file) becomes false. If the file is
empty, the buffer variable file A is undefined and the predicate
EOF{file) becomes true.

If the file is an interactive file, RESET does not read the
first-element of the file.-

SVS Pascal requires a second parameter to RESET. This parame­
ter i~ the name of an existing disk file or device. The parame­
ter takes the form of a string constant or variable •.

The third parameter to RESET is an option to determine whether
the file is buffered or unbuffered. The buffering option may be
specified as the keyword BUFFERED or UNBUFFERED, and it is
described in the subsection following REWRITE, below.

Pascal Reference Manual Page 55

Input and Output Chapter 6

6.1.5 REWRITE - Create or Overwrite a File

The REWRITE procedure creates a new file of a specified name
and discards any existing file of the same name. Thus a call of
the form:

REWRlTE(file, string [, buffering option])

discards the current value of the file variable 8file8, effec­
tively creating a new file. The value of the buffer variable
8fileA8 is undefined and the predicate EOF(file) becomes true.

If the variable had previously been opened, access to the pre­
vious files is lost, and no close or buffer flushing is done.
For a 'proper' closing of any opened file, a specific call to
close must be done.

SVS Pascal requires a second parameter to REWRITE. This param­
eter is the name of a disk file. The parameter can be a string
variable or constant.

The third parameter to RESET is an option to determine whether
the file is buffered or unbuffered. The buffering option may be
specified as the keyword BUFFERED or UNBUFFERED, and it is
described in the subsection below.

6.1.6 The Buffering Option on RESET and REWRITE.

The optional -buffering option- parameter to RESET and REWRITE
can be specified as either BUFFERED or UNBUFFERED. On some
operating systems, tnere is a significant difference in
throughput between buffered and unbuffered input output.

Normally, buffered input output is much more efficient than
unbuffered input output. But, there can also be undesirable side
effects in buffered input output, most notably that output does
not appear at a terminal until a full buffer has been collected.

- The 8buffering option- parameter provides a means to request
either buffered or unbuffered input output for the file specified
in the RESET or REWRITE request. A given operating system might
well override the request, -·depending on the nature of the device
on which the file resides. The standard situation is unbuffered
input output, in the absence of the -buffering option- parameter.

6.2 Text File Handling Procedures

Pascal provides standard procedures for controlling text-file
input and output. These procedures apply to files of type text
or interactive.

Page 56 Pascal Reference Manual

Chapter 6 Input and Output

6.2.1 READ and READLN Intrinsics

READ and READLN read character strings representing numbers
from a textfile and convert them into their internal representa­
tions. There is more on converting numbers later in this subsec­
tion.

READ (vl ' v2 ' ••• , Vn)

is equivalent to a

READ (input, vl , v2 , . . . ,
READ (file, vlr v2, . . . ,

V n)

Vn)

is equivalent to a sequence of READ

READ (file, Vt)J
READ(file, v2 , ••••
READ(file, Vn) 1

procedure calls as follows:

If ·ch· is a variable of type char, the two programs displayed
here are equivalent:
var

ch: char,
rasp: file of char;

READ (rasp, ch)

end

var
ch: char;

rasp: file of char,

end

ch :- raspA,
GET (rasp)

If ·v· is a variable of type integer, any subrange of integer,
real, or double, the procedure reference:

RBAD(file, v)

reads a sequence of characters from the file referenced by
·file"." The sequence of characters should form a valid number
according to Pascal's rules for numbers (described in Chapter 1).
Note that if a real or double number contains a decimal point,
there must be at least one digit on either side of the decimal
point. When the number is formed it ~s then assigned to the vari­
able ·v·. Blank lines and spaces preceding the number are
skipped in the file. Reals are read in the same way as integers.
Booleans cannot be read via a READ or READLN call. Structured
types cannot be read.

If the sequence of characters read from the file do not form a
valid number according to the syntax rules, one of two actions
are taken: if I/O checking is on, the Pascal run-time system
issues an error diagnostic; if I/O checking is off, READ or
READLN return zero (0) and the IORESULT code is set. See Appen­
dix A - ·Messages from the Pascal System" for a list of I/O error

Pascal Reference Manual Page 57

Input and Output Chapter 6

codes.

6.2.2 READ from a file of any type

The READ procedure can also read from a file of any type. A
READ procedure call of the form:

READ(file, vl , v v) 2' ••• , n 1

is equivalent to the sequence:

v l :- file A 1
v2 :- file A 1

GET (file) 1
GET (fil..e) 1

v :- file A 1 GET(file);
GiT(file) 1

~here the wVnw are the list of variables to read into.

Note that the type of each variable in the list must be identi­
cal to the type of the elements in the file.

6.2.3 WRITE and WRITELN Intrinsics

The WRITE and ~TELN intrinsics append character strings to a
textfile. Usually the character strings are generated by convert­
ing one or .ore Write parameters (see below) from their machine
representations into external representations.

The procedure WRITELN differs from the procedure WRITE only in
that WRITELN sends an end-of-line to the output file after the
write is complete.

<write intrinsic> ::= WRITE«file> <write parameters»1

~writeln intrinsic> ::= WRITELN«file> <write parameters»1
I WRlTELN1

<file> ::- <file variable>,

<write parameters> ::= <write parameter> {, <write parameter>}

The <file> parameter in all cases is a file variable which
refers to the file on which to append character strings. If the
<file> parameter is omitted, output is written to file output
'(the computer standard output).

Page 58 Pascal Reference Manual

Chapter 6 Input and Output

6.2.4 Write Parameters

The ~TE and ~TBLN procedures can control the format of the
individual elements that are written. Each parameter to WRITE
or WRITELN is of the form:

<write parameter>' ::- <element>

I

<element>:<field width>
<element>:<field width>:<fraction size>

<element> ::- is the value to be written.
(see descriptions below)

<field width> ::- <integer expression>

<fraction size> ::- <integer expression>

<element> is the value to be written. It may be of type char,
integer, real, 4oGble, Boolean, string or packed array of char.

<field width> and <fraction size> are optional. If <fraction
size» is present, <field width> must also be present •.

<field width> specifies the size of the output field into which
the converted value is written. If the converted value is
smaller than <field width>, the field is filled out with leading
spaces.

<fraction size> is only applicable when the <element> is of
type real or double (see below).

6.2.4.1 Integer Element

The value of the integer expression is converted into a string
representation of that expression in the base 10. The resulting
string is placed right justified into the output field if a field
width greater than needed is specified. If <field width> is too
small to contain the resulting character string, the output field
is expanded until it can contain the output string. If the
integer expression is negative in value, a minus sign precedes
the leftmost significant digit in the field. If the integer
expression is positive, no space precedes the character string
unless the <field width> is greater than the number of characters
to be print~d. If·<field width> is omitted, the default field
width is the minimum required to print the value.

6.2.4.2 Real or Double Element

A real or double element is converted much the same as an
integer element, except that there can be a specification for the
number of digits after the decimal point. In this c~se,

Pascal Reference Manual Page 59

Input and Output Chapter 6

<fraction size> specifies the number of digits to appear after
the decimal point. The converted value is then written in so
called wfixed pointW notation. If <fraction size> is omitted,
the converted number is written out in the floating or exponen­
tial notation. The diagram below illustrates the different forms
-of writing real elements.

WRITE (number: f)
results in a number of the form:

+x.yyyyyE+nn

where -wfw is.the total number of characters in the converted
number. There is one digit before the decimal point and wfw-7
digits after the decimal pOint.

WRITE (number:f:w)
results in a nu~ber of the form:

xxx.yyy

where wfw is the total number of characters (including the
decimal point), and Ww• is the number of digits after the decimal
point.

The extreme real and double values are printed as follows:
positive infinity prints as a row of + signsl negative infinity
prints as a row of - signs1 NaN (Not a Number) prints as a row of
? marks.

6.2.4.3 Scalar Subrange Element'

A write parameter which is a scalar subrange is handled exactly
as the scalar range of which it is a subrange.

6.2.4.4 Character Element

A write parameter which is a character is output as- a single
string character right justified in the output field. If <field
width> is greater than one (1), the field is filled with leading
spaces.

Furthermore, an <element> of type char means that the two pro­
grams displayed below are equivalent.

WRITE (file, <char- expression>: <field width»
is equivalent to

file A
:- , '1

PUT (file) 1
{ these two statements repeated
{<field width> - 1 times

file A
:- <char expression>1 PUT (file)

. I

Page 60 Pascal Reference Manual

Chapter 6 Input and Output

6.2.4.5 String Element or Packed Array of Char

A write parameter which is a string or packed array of char
expression is placed right justified into the output field with
leading spaces. If <field width> is less than the dynamic lengtn
of a string expression, the output field is expanded to contain
the string. If <fieldwidth> is less than the length of a packed
array of char expression, then only the first <fieldwidth> char­
acters are output. If <field width> is omitted, the output field
is the minimum length needed to hold the string.

6.2.4.6 Boolean Element
.

An expression which 1s of type Boolean is written as one of the
predefined identifiers •• 18e or ~rue. If <field width> is
greater than the length of the result·ing string (5 for ·Palse" 1
4 for ·~rue"), the string is written with leading spaces. If
<field width> is less than the length of the string, the field is
expanded to contain the string. If the value of the expression
is not a valid Boolean, the string "tJNDEp· is p.rinted.

6.2.4.7 Hexadecimal Output

Integer expressions may also be output in hexadecimal represen-
. tation. This is accomplished by appending the identifiers hex to

the right of the value, or in the call that a field width is
given, after the field width. Exactly <fiel~ width> characters
are output. Since all such expressions are converted to type
longint prior to output, a maximum of 8 hexadecimal digits are
printed. Any extra characters are blank. If less than 8 charac­
ters are specified, then the least significant portion of the
value is output. The default field width is 8.

6.2.4.8 Pointer Output

Pointer may also be written to text files. Their value is out­
put in hexadecimal notation. An optional field width is
accepted, the default width being 8.

6.2.5 WRITE to file of any type

The WRITE intrinsic can also write to a file of any type. A
WRITE procedure call of the form:

Pascal Reference Manual Page 61

Input and Output

WRITE(file, exprl , expr2' ••• , exprn),

is equivalent,to the sequence:

file A := expr l , PUT (file) ,
file A :-"expr2' POT(file);

• • •
file A

:- exprn, POT (file) ,

Chapter 6

where the exprn are a list of expressions to be written to the
file.

Note that the type of each expression in the list must be the
same as the type of the elements in the file. Integer subranges
are converted to the proper length as needed.

6.2.6 SEEK - Random Access to Typed Files

SVS Pascal supports random access to files of specific types.
The SEEK procedure has two parameters, namely the file variable
and an integer specifying the record number to which the file
window should be moved. SEEK can only be applied to typed files
that are not text files. The format of SEEK is:

procedure SEEK (file: file_type; position: lODg~nt);

file

position

is the file variable for the specified file.

is the number of the record to which the file
window is to be moved. Records are numbered
sequentially from zero (0).

SEEK moves the file window to the "positionWth record in the
file specified by "fileft. The BOF and BOLN predicates are set to
false.

An attempt to PUT a record beyond the physical end of file sets
the EOF predicate true. The physical end of file is the place
where the next record in the file would overwrite another file on
the storage device.

If a GET or PUT is not performed between two SEEK procedures,
the contents of the file window are undefined.

6.2.7 CLOSE - Close a File

CLOSE removes the association of a file variable with an exter­
nal file. A CLOSE procedure call marks the file as closed. The
file variable for that file is then undefined. If a file is
already closed, a CLOSE call does nothing. The form of the CLOSE

Page 62 Pascal Reference Manual

Chapter 6

procedure is:

Input and Output

procedure CLOSE(file [, close_option]),

file is a file variable.

is an optional parameter that controls the dispo­
sition of the closed file. wclose_option ft can be
one of the following:

normal

lock

purge

crunch

The state of the file is set to
closed. If the file was opened with a
RESET procedure call, the Wnormalft
option means that the file is retained
in the file system. If the file was
opened with a REWRITE procedure call,
the wnormalft option means that the
file is removed from the file system
under operating systems where the old
file of the same name is still intact.
The wnormal ft option is the def~ult.

makes the file permanent in the disk
system if it is a disk file. Any
existing file of the same name is
removed from the file system. If the
file is not a disk file, a ftnormal ft
close is done.

deletes the file from the file system
if the file is on a block-structured
device. If the file associated with
-file- is a device instead of a
block-structured volume, the device is
set off-line. If no physical device
or file is associated with Wfile", a
-normal ft close is done.

is the same as the Wlock- option but
in addition, truncates the file at the
point at which it was last accessed.
That is, the end of the file is the
position at which the last PUT or GET
was performed. This option only works
under certain operating systems.

6.2.8 PAGE - Skip to New Page

The procedure PAGE may be used to skip to the top of a new page
on a text or interactive file. The form of PAGE is:

procedure page(file: text),

Pascal Reference Manual Page 63

Input and Output Chapter 6

A call to PAGE actually does not guarantee that the device
being written to will advance to a new page. Instead it outputs
a single ASCII for feed character, 'oct, to the specified file.
In most cases this will result in a form feed.

6.3 Block Input Output Intrinsics

BLOCKREAD and BLOC~TE support random (block level) access to
untyped files only. A block is 512 bytes of data regardless of
the actual file system blocking factor.

6.3.1 BLOCKREAD - Read Block from File

BLOCKREAD reads specific blocks from an untyped file. The
function definition is:

function BLOCKREAD(file, where, blocks [,relblock]): integer 1

file

where

blocks

relblock

is. an untyped file.

is a variable of any type. The variable must be
large enough -to contain the number of blocks
requested.

is an integer value which specifies the number of
blocks to read from the file.

is an optional parameter. If wrelblock" is
present, it represents the block number at which
to start reading from. Blocks are numbered rela­
tive to zero (0).

if wrelblock w is omitted, it implies a sequential
read of the next block in the file. When the
file is opened, or when the file is reset, the
starting block number is set to zero (0). Thus a
BLOCKREAD with the wrelblock w parameter omitted
staEts reading from block zero, and reads sequen­
tial blocks on every subsequent call that has the
"relblockw parameter omitted.

The return value of BLOCKREAD is the number of blocks actually
read. If the value is zero, it indicates either end-of-file or
an error condition. .If the value is greater than zero, it indi­
cates the number of blocks read. If the, return value is less
~·than the number of blocks specified in the function call, it is
ipossible that an end-of-file was encountered during the read.

Page 64 Pascal Reference Manual

Chapter 6 Input and Output

6.3.2 BLOC~TE - Write Block to Pile

BLOCKWRlTE writes specific blocks to an untyped file. The
function definition is:

function BLOC~TE(file, where, blocks' [,relblock]): integer 1

file

where

blocks

relblock

is an untyped file.

is a variable of any type. It must be large
enough to contain the number of blocks to be
transferred.

is an integer value which specifies the number of
blocks to write to the file.

is an optional parameter. If wrelblock w is
present, it represents the block number at which
to start writing to. Blocks are numbered rela­
tive to zero (0).

if WrelblockW is omitted, it implies a sequential
write of the next block in the file. When the
~ile is opened, or when the file is reset, the
starting block number is set to zero (0). Thus a
BLOC~TE with the wrelblock w parameter omitted
starts writing to block zero, and writes blocks
sequentially on every subsequent call that has
the wrelblock w parameter omitted.

The return value of BLOC~TE is the number of blocks that
were actually written. If the return value is zero or a less
than the number of blocks specified, it means either that there
was an error or that tbere is no room for the blocks on the dev­
ice.

6.4 IORESULT - Return Input-output Result

IORESULT is a function that can be used after an input-output
operation to check on the validity of the operation. The func­
tion definition is:

function IORESULT: integer;

Use of the IORESULT function is only appropriate if I/O check­
ing bas been turned off. The $1- compiler option turns checking
off. If I/O checking is on (as it is by default) or turned on
via the $1+ compiler option, any I/O error generates a non­
recoverable run-time error.

If I/O checking has been turned off, I/O errors do not generate
run-time errors, and the programmer can then use IORESULT to

Pascal Reference Manual Page 65

Input and Output Chapter 6

check the completion status of each input output operation.

The value of IORESULT is zero if an input-output operation has
a normal completion. If the value is non-zero, it indicates some
form of error has occurred. See Appendix A - -Messages from the
Pascal System- for a list of error codes.

Example 2! using IORESULT

4:; {$I-} { Turn off the I/O Checking }
~ type

data_file • text 1
var

data: data_file 1

RESET (data, '/source/printfile')l
if IORESULT <> 0 then begin {<> 0 • problem }
~TE (data, '/source/printfile')l { so create it }
if IORESULT <> 0 then begin

WBiTELN('Cannot create /source/printfile ') I
HALT

-end I
end I

In the above example, the $I~ comment toggle turns off
checking for that part of the program. The IORESULT
returns a non-zero value to mean- that the file could
~SET, so the program then tries a REWRITE statement.
fails, then the program halts.

the I/O
function
not be
If that

Page 66 Pascal Reference Manual

Chapter 7 Program Structure

Chapter 7 - Program Structure

A Pascal program is a collection of declarations and statements
which is meant to be translated, via a compilation process, into
a relocatable object-module. Object modules obtained from other, .
separate compilations can be combined, via a linking process,
into a form suitable for execution.

The collection of declarations and statements may also include
compiler directives which control the compilation, and do not
change the meaning of the program.

The results of compilations, the object modules, are sometimes
referred to as ".obj" files since this is the normal file name
extension for such files. SVS Pascal is very flexible in the
mechanisms for crea~ing ".obj" files which are not complete exe­
cutable programs and combining them in the linking process. The
unit mechanism, derived from UCSD Pascal, is provided for
"secure" independent compilation. Using this mechanism, a group
of declarations and procedures can be compiled into an ".obj"
file. This ".obj" file can be used by other Pascal compilations
to insure that interfaces are consistent, and subsequently linked
with the ".obj" files created in these compilations. Alterna­
tively, independent compilation via the external (or cexternal)
mechanism can be used for "insecure" independent compilation of
Pascal routines, or for linking Pascal to routines written in
other SVS languages or assembly language.

7.1 Compilation Units

Before describing in detail the various compilation units and
their components, the following are some examples of compilation
units with accompanying explanations.

Pascal Reference Manual Page 67

Program Structure Chapter 7

Example of Complete Program Compilation Unit

progra. complete:
var i: integer:

begin
i :a 17;
writeln(i):

e~ •

. The above program is complete and can be compiled and executed.
It does not make use of any separate compilation.

Example of Program with Insecure Separate Compilation

program missingsomething;
var i: longint:

procedure getvalue(var fi: longint); external;
. .

procedure callme;
begin

writeln(tI got called!'):
end:

begin
getvalue(i);
writeln(i);

end.

This example illustrates the call on an external procedure
called getvalue w~ich will have to be supplied in the linking
process in order to make a complete executable program. It is
possible that this external procedure has been written in assem­
bly language, or in SVS FORTRAN, or in Pascal. (Note: if the
~procedure had been written in SVS C, the calling sequence to the
external would have to be different and the programmer should
have coded getvalue as a cexternal instead of an external).

Regardless of the origin of getvalue, the Pascal system will
make no attempt to match parameter types, etc. between the call
and the code called. Pascal is satisfied that the external
declaration describes the interface and it is the programmer's
responsibility to insure that the receiving subroutine is suit­
able. Thus, this method of independent compilation is referred
to as winsecure".

The example also contains a procedure "callme" which may well
be referenced in some other compilation unit as an external.
This other compilation unit must not, however, contain a main

Page 68 Pascal Reference Manual

Chapter 7 Program Structure

program, since it is not allowed to link together ".obj· files
containing more than one main.

Bxample of a Simple Unit

unit IBideAndBoldAndPrintX,
interface

var publicinteger: integer,

procedure setx(fx: real),
procedure printx,

1apleaentation
var x: real,

procedure setx,
begin

x :- fx,
end 1

procedure printx;
begin
writeln(x) 1
end;

end.

This example creates a unit with two procedures in its public
part and a private variable. The ".obj" created by the Pascal
system for this uni~ contains linkable object code for the two
procedures and contains the source code for the interface section
of the unit. Let us assume that the-Qreated object code for this
unit is named "hide.obj".

When another compilation "uses" this unit (see example below),
which is to say uses the ".obj" code of this unit, the interface
source code declarations are extracted from the unit's ".obj"
file and processed to insure that interfaces match properly.
This is why the unit mechanism is referred to as ·secure"
independent compilation.

Example of Program Using ~ Unit

program UseUnit;
uses {$U hide.obj} IBideAndHoldAndPrintX;

begin
publicinteger :- 99;
setx(17.3); printx,
writeln(publicinteger);

end.

Pascal Reference Manual Page 69

Program Structure Chapter 7

This program has available the variables in the interface sec­
tion of the referenced unit as well as the procedures declared
there (by actual inclusion of the source code which is part of
the unit's -.obj- file). The Pascal system checks and enforces
that the interfaces are matching between this compilation and the
unit.

The Pascal system must be told what the file name of the -.obj­
of the referenced unit is. This is done using the $0 directive.
In the event that more than one unit is to be used, the following
method should be utilized: .

uses t$U filel.obj} FirstOnit,
$U file2.obj} SecondUnit1

The order in which these units are used may be important. If the
SecondUnit unit used FirstUnit when it was compiled, it more than
likely depended on FirstUnit to make its own declarations mean­
ingful. In this event, the order must be as shown.

The examples shown here illustrate only a few of the possibili­
ties. Uni.ts can use units. Global procedure and function names
in programs. and interface procedures and functions in units
become available for reference via the external mechanism, etc.

The key to properly using units is .to remember that the inter­
face information is included in the using compile as source
declarations. This fact determines the order in which. compila­
tion must be done and what must used where and in what order.

The more formal details of compilation units follows.

A compilation unit is either a program (a main program), or a
unit. A complete executable program consists of a single program -
and zero or more units.

A program is a main program, consisting of all the statements
between a prograa statement and an end. statement. The main pro­
gram is described in more detail later in this chapter, in the
isection entitled ·Program Heading-.

. A unit is a collection of declarations and statements packaged
so as to make parts of ~he declarations in the unit public to
other parts of the same compilation unit or separate compilation
units. Units are useful for sharing common code among different
programs or as a means to avoid compiling a huge p'rogram . every
time one line is changed. Units are compiled separately.

A program or unit that uses another unit is known as a "ho$t".
A host uses other units' declarations by naming those units in
uses declarations. The uses clause appears after a program head­
ing or it appears in a unit at the start of the interface section
(see below).

Page 70 Pascal Reference Manual

Chapter 7 Program Structure

A unit contains two major parts, namely an interface part which
describes how other units view this unit, and an t.pla.entation
part which supplies the actual body of code to implement this
unit.

<unit> ::= unit <identifier>,
<interface part>

<implementation part>
end.

<interface part> ::- interface
<uses clause>
<constant definition part>

<type definition part>
<variable definition part>
<procedure and function declaration part>

<implementation part> ::==
t.pleaen tat ion
<label declaration part>
<constant definition part>

<type definition part>
<variable definition part>

<procedure and function declaration part>

<uses clause> ::= uses <identifier> {,<identifier>} ;

Tbe interface part declares constants, types, variables, pro­
cedures and functions that are globally available. A host pro­
gram that uses that unit has access to those objects just as if
they had been declared in the host program itself.

Procedures and functions declared in the interface part consist
only of the procedure or function name and the description of the
formal parameters. These declarations serve as procedure or
function prototypes - there is no executable code associated with
them. This is equivalent to a forward declaration except that no
forward attribute is allowed.

The t.plementation part follows the interface part. Local
objects are declared first, then the global procedures and func­
tions are declared. Formal parameters and function result type
declarations are omitted from the tmpleaentation part, since they
were already declared in the interface part.

A unit can consist entirely
stants, types and variables).
function declarations.

of interface declarations (con­
There need not be any procedure or

The declarations in the interface part of a unit are accessible
in another compilation only after that unit is specified in a
uses statement of that compilation. The uses clause is used in
conjunction with the $U compiler option. The unit will be

Pascal Reference Manual Page 71

Program Structure Chapter 7

searched for the file specified in the most recently appearing $U
option. The file searched will be the file name with and -.obj­
suffix. Thus the unit must have been previously compiled.

The overall layout of a unit is like this:

unit GanipGanopl

interface This part declares the
interface section

r-

uses names of This part is optional if
other units GanipGanop does not use any

things from other units
Note that~f any declarations
imported from other units are
referenced in the interface
part of GanipGanop then the
compilation that uses
GanipGanop must first uses
that other unit.

{..... declarations and
procedure headings

for the GanipGanop unit.

J

All these declarations and procedure
headings are PUBLIC to other units ••••• }

~lemeDtation { Thi~ part declares the }
{ imp~ementation section }

{..... declarations and
code for the GanipGanop unit.

All these declarations and code are
PRIVATE to GanipGanop ••••• }

end. {of the GanipGanop unit }

'7.2 Declarations and Scope of Identifiers

;, Declarations introduce program objects, together with their
identifiers, which denote these objects elsewhere in a program.

<declaration> ::= <label declaration>
<constant declaration>

<type declaration>
<variable declaration>
~<procedure or function declaration>

The program region (over which all uses of an identifier are
associated with the same object) is called the scope of the iden-
tifier. Within a compilation unit, such a region is either a
unit body or a block body. In the case of a unit, the scope is a
declaration list. In the case of a block, the, scope is a

Page 72 Pascal Reference Manual

Chapter 7 Program structure

statement list preceded by an optional declaration list.

The scope of an identifier is determined by the context in
which it was declared.

A program or a unit is a static construct intended to control
the scope of identifiers according to these rules:

1. The scope of an identifier declared at the outermost level
of a program is the body of that program.

2. The scope of an identifier listed in the interface part of a
unit is the body of that unit, and is also extended "out­
wards" to any other unit that uses that unit.

3. Identifiers declared at the outermost level of the
t.pleaentation part of a unit have the entire body of that
unit as their scope, but are private to that unit.

Procedure or function blocks also control the scope of identif­
iers. There are both similarities with, and differences from,
programs or units.

Like programs or units, blocks control the scope of identif­
iers.

Unlike programs or units, blocks control the processing of
declarations and determine when the declarations take effect.

The block-structured scope rules are as follows:

1. The scope of an identifier declared in the declaration list
of a block is the body of that block.

2. If the scope of an identifier includes another block, its
scope is extended "inward" to include the body of that inner
block, unless the body contains a re-declaration of that
identifier. .

3. An identifier which is declared as a formal parameter of a
procedure or function has as its scope the body of that pro­
cedure or function.

4. Field selectors are identifiers introduced as part of the
definition of a record type for the purpose of selecting
fields of records. The scope of a field selector is the
record in which it is declared. As with the nesting of pro­
cedures, the existence of an inner scope identifier masks
the accessibility of any outer identifiers of the same name.
Field selectors must be unique within the declaration of a
record.

Pascal Reference Manual Page 73

Program Structure Chapter 7

5. Identifiers must be unique within the bounds of a given
scope.

7.3 Program Beading

The prograa statement identifies the main program for a Pascal
compilation. In SVS Pascal, the program header is scanned but
otherwise ignored. A program has the same form as a procedure
declaration except for the heading.,

<program> ::= <program heading> {<uses clause>} <block>.

<program heading> ::=
program <identifier> {«program parameters»},

<program parameters> ::- <identifier> {,<identifier>}

The identifier following the word program is the program name.
It has no further meaning inside the program. The program param­
eters are optional. No global identifiers in the program may
have the same name as any of the program parameters.

7.3.1 Predeclared Variables
-- .

SVS Pascal supplies five pre-declared variables. First there
are standard files :

input

output

stderr

is the standard file from which console input can
be done via READ and READLN statements,

is the standard file to which console output is
directed via WRITE and ~TELN statements,

is the standard error output file. On those
operating systems which support a separate file
for error responses, stderr is connected to that
stream. On those operating systems which do not
support a separate file for error responses,
stderr is connected to the same place as output.

Then there are the two variables associated with obtaining argu­
ments from the operating system command line (see the next sub­
ject heading below):

argc

argv

Page 74

is a count of the number of arguments supplied on
the command line.

is an array of pointers to the character strings
containing the command line arguments.

Pascal Reference Manual

Chapter 7 Program Structure

7.3.1.1 ARGC and ARGV - Access to Command Line

As mentioned above, "argc" and "argv· provide access to the
Pascal program's command line as the user typed it. "argc· and
·argv· can be consid~red to be defined by a declaration of the
form:

type
stringtype • string[anylength];
pstring • AstringtypeJ

var
argc: integerJ
argv: array[l •• argc] of pstringJ

Each element of argv contains a separate field from the command
line that invoked this Pascal program. If "argc" is zero (0), no
attempt should be made to reference ·argv·. The first element of
-argv· is the first parameter from the command line. The name of
the command itself mayor may not be available as the first com­
mand line argument depending on the operating system under which
the program is run. Avoid assigning to any element of -argv·.

7.4 Declarations

7.4.1 Label Declarations

The label declaration part declares all labels (which tag
statements) in the statement part of the block.

<label declaration part> ::- label <label> {, <label>};

7.4.2 Constant Definition

The constant definition part declares all constant names and
their associated values that are local to the procedure or func­
tion definition.

<constant definition part> ::= const <constant definition list>

<constant definition list> ::=
<constant definition> {<constant definition>}

7.4.3 Type Definition

The type defi~ition part contains all the type definitions that
are local to the procedure or function definition.

<type definition part> ::= type <type definition list>

Pascal Reference Manual Page 75

Program Structure Chapter 7

<type definition list> ::= <type definition> {<type definition>}

7.4.4 Variable Declaration
.

The variable declaration part contains a definition of all the
variables that are local to the procedure or function.

<variable declaration part> ::= var <variable declaration list>

<variable declaration list> ::=
<variable declaration> {<variable declaration>}

7.5 Procedure and Function Declaration

A procedure declaration or a function declaration associates
an identifier (the procedure or function name) with a collection
of declarations and statements. A Pascal statement can then
cause that procedure to be executed (activated) by giving its
name in a procedure reference statement. A function declaration
is similar to that of a procedure with the additional capability
that a function can compute and return a value, called the value
of the function. A function is referenced by giving its name in
an expression, when the value of the function appears as a factor
in that expression.

The type of v~lue that a function returns is specified when
the function 1S declared. The function return value is the
value last assigned to its function identifier before a return is
made from the function. Returning from a function without ever
assigning a value to the function designator (for the current
activation of the function) produces an undefined result (usually
with undesirable results from the programmer's viewpoint).

Using a procedure or function identifier within the declaration
of that procedure or function implies recursive activation of
that procedure or function, except when a function identifier
appears on the left hand side of an assignment statement, (imply­
~ng assignment to the function variable rather than recursive
activation - see below).

<procedure declaration> ::=~<procedure heading> <block>

<block> ::= <label definition part>
<constant definition part>

<type defin~tion part>
<variable declaration part>

<procedure and function declaration part>"
<statement part>

<statement part> ::= begin <statement list> end

Page 76 Pascal Reference Manual

Chapter 7 Program Structure

<statement list> ::~ <statement> {, <statement>}

All the definition and declaration parts above are optional,
with the exception of the <statement part>.

The procedure heading specifies the identifier that names the
procedure, and any formal parameters for that procedure.

Procedure parameters are either value parameters, variable
parameters, or procedure or function parameters.

<procedure heading> ::-
procedure <identifier>, {<attribute>,} .

I procedure <identifier> «tormal parameters», {<attribute>,}

<function heading> ::-
function <identifier>: <result type>; {<attribute>,.}

I fUDction <identifier>«formal parameters<);{<attribute>;}

<formal parameters> •• -
<formal p;rameter> {,<formal parameter>}

<formal parameter> ::-
<parameter group>

var <parameter group>
<procedure heading>

<function heading>

<parameter group> ::-
<identifier> {,<identifier>}:<type identifier>

<attribute> ::- external forward cexternal

<result type> ::- <simple type>

Note that the Wexternal", wforward", and ·cexternal"
butes are optional.

7.5.1 External and Forward Attributes

attri-

A Pascal host can use routines that are separately compiled or
assembled in languages other than Pascal. To use an external
routine, the host must make a procedure or function declaration
for that external routine just as if it is a Pascal routine that
is declared in this compilation unit or another compilation unit.
The declaration is then followed by the external attribute to
indicate that the body routine does not appear in the current
compilation unit. External routines must conform with the Pas­
cal calling conventions and data representation methods as
defined in Appendix E - WData Representations w• The cexternal
attribute means that the compiler generates calls to external
procedures in a manner which is compatible with the SVS C

Pascal Reference Manual Page 77

Program Structure

compiler.

Chapter 7

Pascal normally dictates that procedures "and functions be
declared before they can be referenced. There are cases when
program layout makes this impossible, such that a procedure or
function must be referenced before it can be declared. The
forward attribute indicates that the particular procedure or
function declaration consists only of the header, and that the
body of that procedure or function appears later in the program
source text, possible after it is referenced. A forward-declared
procedure or function, then, is actually declared in two distinct
parts: its header or prototype is declared, with the forward
attribute, before any reference is ever made to ~it1 at some
later point in the program source text, its body is declared. At
this later point, the formal parameter section must not ap'pear.

7.5.2 Parameters for Procedures and Functions

Parameters (also called arguments) provide a dynamic substitu­
tion method such that a procedure or funct~on can process dif­
ferent sets of data in different activations.

There is a correspondence between the formal parameters
declared in a procedure or function heading and the actual param­
eters supplied when the procedure or function is act1vated.

The procedure or function heading declares a list of formal
parameters. These are "dummy" variables that are assigned values
when the procedure or function is activated.

A reference to the procedure or function supplies a list of
actual Earameters that are substituted for the formal parameters,
which t en become local variables initialized to the value of the
actual parameters.

There are four kinds of formal parameters:

• Value parameters •
. ~ • Variable or Reference parameters.

• Procedure parameters.
• Function parameters.

A parameter group without a preceding specifier, implies that
the parameter is a value parameter.

7.5.2.1 Value Parameters

Value parameters are those whose formal parameter declaration
has no symbol marking them as one of the other three forms. The
corresponding actual parameter must be an expression. In the
body of the procedure or function, the formal parameter is

Page 78 Pascal Reference Manual

Chapter 7 Program Structure

initialized to the value of the expression at the time the pro­
cedure or function is activated. The formal parameter is then
just like a local variable. The value of the formal parameter
may be changed by assignment the actual parameter remains
unchanged.

7.5.2.2 Variable Parameters

Variable parameters, also called reference parameters, are
those whose declarations start with the symbol var (for
variable). The actual parameter must be a variable of a type
which is identical to that of the formal parameter. The formal
parameter directly represents, and can change, the actual
parameter's value during the entire execution of the procedure or
function.

var actual parameters must be distinct actual variables. It is
a programming error to supply the same variable to more than one
actual parameter in a procedure or function reference.

All index computations, field se1ection and pointer dereferenc­
ing are done at the time the procedure or function reference is'
made.

7.5.2.3 Procedure and Function Parameters

Procedure and Function parameters are the names and parameter
lists of procedures or functions that can be referenced by the
current procedure.

These parameters are indicated by the symbol procedure or
function in the formal parameter declarations. Such procedures
or functions are called parametric. Actual parameters to
parametric procedures and functions must be of identical type to
those declared in the formal parameter declarations.

Examples of Procedure and Function Declarations

{ a procedure with only value parameters
procedure ByTheBook(Chapter, Verse: integer),
begin

Chapter := 1,

end;

Pascal Reference Manual

{ does not change the caller's
version of Chapter }

}

Page 79

Program Structure Chapter 7

{ a procedure with variable parameters }
procedure Change(var winds: integer),
begin

winds:= 76, {Changes the caller's version }
end,

function
begin

{ the Ackerman function }
Ackerman(m, n: integer):integer,

if m - 0 then
Ackerman := n + 1

else if n - 0 then
Ackerman .-.- Ackerman(m - 1, 1)

else
Ackerman :- Ackerman(m - 1, Ackerman(m,

end,

{ parametric function parameter }
function Integrate(lo, hi: real,

var
what(x: rea1):rea1): rea1;

start: integer;
finish: integer;
point: integer;
current: real;
sum: real,

begin
start := TRONC(lo);
finish := ROOND(hi);
sum := 0.0;

for point:= start to finish do
begin

current := point;
sum := sum + what(current);

end;
Integrate := sum /' (finish - start);

end;

n - 1»

Page 80 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

Chapter 8 - Standard Procedures and PunctioDs

SVS Pascal (in common with other Pascal implementations) sup­
plies a number of standard (Rbuilt inR) procedures and functions.
This chapter covers those. The standard procedures and functions
fall into several logically related .groups, as follows:

• String Manipulation. These intrinsics handle the SVS Pascal
dynamiC string types.

• Memory Management. These intrinsics deal with dynamic memory
allocation and de-allocation.

• Arithmetic Functions.

• Boolean Predicates.

• Conversion Functions.

• Miscellaneous Low Level Procedures and Functions.

8.1 String Manipulation Facilities

This section discusses those facilities for manipulating string
data types in Pascal. For purposes of this section, string data­
types are those declared atring[n], for some n, not packed
array[l •• n] of char. The type RstringtypeR utilized below should
be read as matching any type declared atring[n]. Bere is a brief
summary of the facilities:

CON CAT

COpy

DELETE

INSERT

LENGTH

concatenate a number of strings into one string.

extract substring of a string.

delete characters from a string.

insert characters into a string.

determine the current dynamic length of a string.

Pascal Reference Manual Page 81

Standard Procedures and Punctions Chapter 8

POS scan for a pattern within a string.

SCANEQ and SCANNE

scan for a specific character within a stri~g.

8.1.1 LENGTH - Determine String Length

LENGTH is an integer function that returns the length of a
string expression. The function definition is:

function LENGTH (source: stringtype): integer,

LENGTH returns an integer value which is the dynamic length of
the string "source".

The length of the string II is zero (0).

Examples of LENGTH

alphabet := labcdefghijklmnopqrstuvwxyz',
WRITELN(LENGTH(alphabet), • I,

alphabet[l], • I

alphabet[LENGTH(alphabet)], '
LENGTH (, ,)) ,

I

the following output is displayed

26 a z o

8.1.2 COpy - Copy a Substring

COPY·returns a stringtype which is a substring of another
string. The function definition is:

function COpy (source: stringtype,
index: integer,
size: integer): stringtype,

COpy returns a string which is a substring of the string
"source". COpy extracts ·size" characters from ·source", start­
ing at the character position given by "index".

The first character in the string is numbered 1.

If "index" is negative or zero, the result is a null string.

Page 82 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

If ·index· is greater than LENGTH (source) , the resu~t is a null
string.

If ·index· + "size" is greater than LENGTH (source) , the result
is a string which extends from ·index· to LENGTH(source).

var
left: string[lOO]:
middle: string[lOOl:
right: string[lOOl:
title: string[2551:

Example of ~

title :- 'Left Side. Middle Part. Right Side.':
left :~ COPY(title, 1, 10);
middle := COPY(title, 12, 12);
right :- COPY(title, 25, 11):
WRITELN (left) :
WRITELN(middle);
WRITELN(right);

Left Side.
Middle Part.
Right Side.

This should generate the output:

8.1.3 CONCAT - Concatenate Strings

CONCAT returns a stringtype result, which is the concatenation
of its (string) parameters. The function definition of CONCAT
is:

function CON CAT (sl: stringtype;
s2: stringtype: •••••
sn: stringtype): stringtype:

Each of the ·Sn· is a string variable or a string constant or a
literal value. There may be any number of source strings, each
separated by a comma from the next. There must be at least two
source strings.

Pascal Reference Manual Page 83

Standard Procedures and Functions Chapter 8

Example 2! CONCAT

title :- CONCAT('Here', " there', " and everywhere')~
WRITELN (title) ~

This should generate the output:

Here, there, and everywhere

8.1.4 POS - Match a Substring in a String

POS is used for string matching. The function definition is:

function POS (pattern: stringtype1
inwhat: stringtype): integer 1

POS scans from left to right trying to find an instance of the
string ·pattern" in the string ·inwhat". If a match i$ found,
POS returns an integer value that is the position in ·inwhatft at
which the ·pattern" starts to match.

If there is no match, the result is zero (0).

If ·pattern" is longer than ftinwhat W
, the result is zero (0),

or no match.

If no ·pattern" is the null string, ", the result is one (1),
since the null string matches the first position in any string.

Example of POS

herbs := 'Basil, Chervil, Fennel, Tarragon';
WRITELN (POS ('Chervil', herbs), • " POS ('Nutmeg', herbs»;

Y This should generate the output:

8 0

8.1.5 SCANEQ and SCANNE - Scan for Character

SCANEQ and SCANNE search a character array until they find
(SCANEQ) or do not find (SCANNE) a specified character in the
array. The function definitions are:

function SCANEQ(len: integer;
function SCANNE(len: integer;

Page 84

what: char; object): integer;
what: cbar; object): integer;

Pascal Reference Manual

Chapter 8 Standard Procedures and Punctions

SCANxx scans "object" for "len" characters, or until the char­
acter "what" is found (SCANEQ) or not found (SCANNE). The result
is the offset into "object" where the scan stopped. If the char­
acter "what" is not found (SCANEQ) or is found (SCANNE),. SCANxx
returns the value "len". If the "len" parameter is positive,
scanning is from left to rightJ if the "len" parameter is nega­
tive, the scan proceeds from right to left, and a negative value
is returned.

Note that the SCANxx functions simply look at bytes in memory.
They ignore any higher level structure that the user might per­
ceive or might have imposed on the object. Thus "object" is sim­
ply an address in memory at which to begin scanning (or in the
case where "len" is negative, to end the scan). Thus, for exam­
ple, if the programmer were to do a SCANEQ on a data type of
8tring[80], the length byte of that string would also be scanned,
and the results might be unexpected.

8.1.6 DELETE - Delete Characters from String

DELETE removes a specified number of characters from a string.
The procedure definition is:

procedure DELETE (destination: stringtype;
index: integerJ
size: integer);

"destination" is a string. "index" and ·size" are integers.

DELETE removes "size" characters from "destination", starting
at the position specified by "index".

If "index" is greater than LENGTB(destination), there is no
action taken.

If either "index" or ·size" is negative or zero, there is no
action taken.

If "index" + ·size" is greater than LENGTB(destination), DELETE
removes all characters from "index" up to the end of the "desti­
nation" string.

Pascal Referende Manual Page 85

standard Procedures and Functions Chapter 8

var

Example of DELETE

large: string[lOO];

large := 'A long exhausting rally, eh what, chaps'1
DELETE(large, 8, ll};
WRI'l'ELN (large) ;

This should generate the output:

A long rally, eh what, chaps

8.1.7 INSERT - Insert Characters into String

INSERT inserts one character string into another character
string at a specified place. The procedure definition is:

procedure INSERT (source: stringtype;
destination: stringtype;
index: integer);

The "source" string is inserted into the "destination" string
at a position determined by the value of "index".

If' the length of "destination" is less than the value of
"index", then no action is taken.

No check is made as to if the length of the result string is
greater than the maximum length of the destination string. The
result in such a case is usually not what the programmer
intended.

~8.2 Storage Allocation Procedures

Dynamically allocated storage is held in a large common storage
pool, called. a "heap". Storage is allocated from that pool by
using the procedure NEW. Storage is released back to the pool
(de-allocated) by using the DISPOSE procedure. Alternatively,
some Pascal implementations handle memory de-allocation via the
MARK and RELEASE procedures. SVS Pascal provides MARK and
RELEASE for compatibility.

NEW

DISPOSE

'-Page 86

is responsible for allocating storage.

is responsible for freeing or releasing storage
back to the common storage pool.

Pascal Reference Manual

Chapter 8

MARK

RELEASE

MEMAVAIL

Standard Procedures and Functions

provides a means to ·remember w the current top of
the heap.

releases memory from a previously MARR'ed point.

determines the amount of memory available for
allocation.

8.2.1 NEW - Allocate Storage

The procedure NEW allocates dynamically available storage. If
.p. is a variable of type pointer to ·T·, NEW(p) allocates
storage for a variable of type ·T· And assigns a pointer to that
storage to the variable .p.. There are two forms of the NEW pro­
cedure reference:

NEW(p) allocates a new variable wv·, and assigns the
pointer reference of ·v· to the pointer variable
wp.. If the type of ·vR is a variant record,
storage is allocated for the largest variant of
the record. Storage for a specific variant can
be allocated by using the second form of the NEW
procedure, as follows:

NEW (p , t 1 , t 2' ••• , t n)

allocates a variable of the variant, with tag
fields tl •• tn. The tag fields must be listed
contiguously and in the order of their declara­
tion 1n the variant record type definition.

If NEW is used to allocate storage for a specific variant
record, the subsequent call to DISPOSE must use exactly the same
variant. Any mismatch between the variants specified on the call
to NEW and those on the DISPOSE call can damage the integrity of
the heap, causing strange behavior at best and system crashes at
worst .•

If NEW fails to allocate the requested storage (usually because
the storage is not available), the pointer variable .pR contains
the value nil upon return from the procedure.

Pascal Reference Manual Page 87

Stanaard Procedures and Functions

Example of NEW

const
OpperLimit = 255;

type

var

LArray • array[l •• OpperLimit] of integer;
ArrayAddr = ALArray;

head: ArrayAddr;

NEW (head) ;
if head = nil then

••••• ·take some recovery action •••••
else

begin
headA[ll :- 0; {zero fill array }
MOVELEFT{headA[l], headA [2],

SIZEOF{integer)*{OpperLimit - 1»;
••••• and so on •••••

end

8.2.2 DISPOSE - Dispose of Allocated Storage

Chapter 8

DISPOSE frees (or de-allocates) dynamically allocated storage.
The procedure reference:

DISPOSE (p);

frees up the allocated storage referenced by the pointer variable
.p". Upon return from DISPOSE, the pointer variable .p" contains
the value nil.

Atte.mpts to DISPOSE using a pointer variable that contains nil
~s a no-op and is ignored.

If NEW was used to allocate a variable with a specific variant,
DISPOSE should be called with exactly the same variant, else the
heap is likely to be corrupted.

DISPOSE currently does not return the deallocated memory to the
heap.

8.2.3 MARK - Mark Position of Heap

MARK is used to ·remember" the current position of the top of
heap. MARK and RELEASE are used together to de-allocate memory
and return the top of the heap to a previously MARK'ed point.

Page 88 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

For example, a procedure might, upon entry, MARK the heap top,
then allocate large numbers of variables, and then, just prior to
exiting, RELEASE all the allocated memory. Such a situation
might occur, for instance, in allocating .the local symbol table
for an assembly unit. At the end of the unit, all the local
labels need to disappear - MARK and RELEASE provide a handy means
to dispose of storage in bulk. The procedure definition of MARK
is:

procedure MARK (HeapPointer: A any thing),

wHeapPointer W must be a pointer the pointer type is
irrelevant but conventionally it is a pointer to a longint.
-HeapPointer W must not be used for any purpose other than ·as a
MARK pointer.

8.2.4 RELEASE - Release Allocated Memory

RELEASE is used to cut the heap back to a point previously
MARKled. The procedure definition of RELEASE is:

procedure RELBASE(HeapPointer: AanytbiDg),

As for MARK, "HeapPointer" is a pOinter of any type but conven­
tionally is a pointer to 10Dgint. RELEASE cuts the heap back to
the place indicated by "HeapPointer". "BeapPointer W must have
been properly initialized by a previous call to MARK. MARK's and
RELEASE'S must be matched properly.

8.2.5 MEMAVAIL - Determine Available Memory

MEMAVAIL returns the number of bytes available for allocation
in the storage pool. The function definition of MEMAVAIL is:

function MEMAVAIL: longint,

8.3 Arithmetic Functions

8.3.1 ABS - Compute Absolute Value

ABS (x) computes the abso,lute value of its argument "x". The
type of the result is the same as the type of "x",.which must be
either integer, real, or double.

8.3.2 SOR - Compute Square of a Number·

SQR(x) computes the square of "x", that is, it computes x*x.
The type of the result is the same as the type of "x", which must

Pascal Reference Manual Page 89

Standard Procedures and Functions Chapter 8

be either integer, real, or doable.

8.3.3 SIN - Trigonometric Sine

SIN (x) computes the trigonometric sine of the argument ·x·.
The type of ·x· may be either integer, real, or double. The
return type of SIN is always r~al or double. The argument is in
radians.

8.3.4 COS - Trigonometric Cosine

":COS (x) computes the trigonometric cosine of the argument ·x·.
The type of ·x· may be either integer, real, or double. The
return type of COS is always real or double. The argument is in
radians.

8.3.5 ARCTAN - Trigonometric Arctangent

ARCTAN (x) computes the trigonometric arctangent of the argument
·x·. The type of ·x· may be either integer, real, or double.
The return type of ARCTAN is always real or double.

8.3.6 EXP - Compute Exponential of Value

EXP(x) computes the exponential of the argument ·x·. The type
of "x" may be either integer, real, or double. The return type
of EXP is always real or double.

8.3.7 PWROFTEN - Compute Ten to a Power

The function PWROFTEN (x) 'returns a value which is 10 raised to
the power specified by the argument. The function definition is:

~unction pwroften (exponent: integer): real;

The valid range of the ·exponent" argument is 0 •• +38.

8.3.8 LN - Natural Logarithm of Value

LN(x) computes the natural logarithm of the argument ·x". The
type of ·x· may be either integer, real, or double. The return
:type of LN is always real or double. It is an error 'to supply an
argument less than or equal to zero.

Page 90 Pascal Reference Manual

Chapter 8 Standard Procedures and Functions

8.3.9 SQRT - Square Root of Value

SQRT(x) computes the square root of the argument ·x-. The type
of ·x· may be either integer, real, or double. The return type
of SQRT is always real or double. It is an error to supply an
argument less than or equal to zero.

8.4 Predicates or Boolean Attributes

8.4.1 ODD - Test Integer for Odd or Even

ODD (x) determines if the argument is odd or even. The type of
the argument ·x· must be integer. The result is true if ·x· is
an odd number, false if ·x· is an even num~er.

8.4.2 EOLN - Determine if End of Line Read

The function BOLN returns true if the textfile position is at
an end-of-line character. Otherwise the EOLN function returns
false. BOLN is only defined -for files whose components are of
type text or interactive.

8.4.3 EOF - Determine if End of File Read

The function BOF returns true if a read from a file encounters
an end-of-file. BOF returns false in all other cases. To set
EOF true for a file attached to the console, the EOF character
must be typed. In SVS Pascal this is Control-D. For a textfile,
EOF being true implies that EOLN is true as well.

If a file is closed, BOF returns true. After a RESET tak·es
place, EOF is false for the RESET file. If EOF becomes true dur­
ing a GET or a READ, the data obtained is not valid.

8.4.4 ISNIN, ISINF, ISNOM

The three predicates ISNIN, ISINF, and ISNOM take either a real
or double parameter and return true if that value is Not A
Number, is an INFINITY value, or is a NUMBER, respectively. Oth­
erwise they return false.

8.5 Value Conversion Functions

Pascal Reference Manual Page 91

Standard Procedures and Functions Chapter 8

8.5.1 TRUNC - Truncate to Nearest Integer

The function TRUNC(x) truncates its argument "x· to the nearest
integer. ·x· must be of type real or double. If the result of
truncating the argument ·x· cannot be stored in an integer vari­
able, the maximum negative longint value is returned.

For x >- 0, the result is the largest integer <= x.

For x < 0, the result is the smallest integer >= x.

8.5.2 ROUND - Round to Nearest Integer

The function ROOND(x) rounds its argument ·x" to the nearest
integer. ·x· must be of type real or double. The result is of
type integer. If the result of rounding the argument ·x" cannot
be stored in an integer variable, the maximum negative longint
value is returned.

For x >= 0, the result is TRUNC(x+O.s).

For x < 0, the result is TRUNC(x-O.s).

8.5.3 ORO - Convert Type to Integer Value

The function ORD(x) returns an integer which is the ordinal
number of the argument ·x" in the set of values defined by the -
type of "x". The argument "x" can be any non-floating point
scalar. For example:

var
one letter : char:
converted: integer 1

begin
one letter := 'm'1
converted := ORD(one_letter) 1

At the end of this program fragment, the variable "converted"
has the value 109, since that is the ordinal position of lower
case 'mi· in the ASCII character set.

8.5.4 ORD4 - Convert to Long Integer

The function ORD4(x) returns a longint which is the ordinal
number of the argument "x". As for ORD, the argument "x" can be
any non-floating point scalar.

Page 92 Pascal Reference Manual

Chapter 8 Standard Procedures and Punctions

8.5.5 CRR - Integer to Character Representation

The function CBR(x) converts its argument
The argument ·x· must be an integer. The
the character whose ordinal number is ·x".
therefore lie in the range 0 •• 255 for
result.

·x· to a character.
result type of CBR is

The argument must
CBR to return a valid

8.6 Other Standard Punctions

8.6.1 SUCC - Determine Successor of Value

The function SOCC(x) accepts an argument which is any scalar
type except real or double. The result of SUCC is the successor
value of the argument, if such a successor value exists.

SOCC(x) is undefined if ·x· does not have a successor value.

8.6.2 PRED - Determine Predecessor of Value

The function PRED(x) accepts an argument which is any scalar
type except real or double. The result of PRED is the predeces­
sor value of the. argument, if_such a predecessor value exists.

PRED(x) is undefined if ·x" does not have a predecessor value.

8.7 Miscellaneous Low Level Routines

8.7.1 MOVE LEFT and MOVERIGHT

MOVELEFT and MOVERIGBT transfer a number of bytes from a source
to a destination. MOVE LEFT starts at the leftmost byte in the
source (the first byte), while MOVERIGBT starts at the rightmost
byte in the source (the last byte). In all cases the source and
destination strings can overlap, with the appropriate undesired
results if the move is in the wrong direction. The format of
MOVELEFT and MOVERIGHT is:

procedure MOVELEFT(var source, var destination, length) ;

procedure MOVERIGHT(var so'urce, var destination, length) ;

source is the place to move bytes from.

destination is the place to move bytes to.

length is an integer specifying the number of bytes to
move.

Pascal Reference Manual Page 93

Standard Procedures and Functions 0 Chapter 8

"source" and "destination" can be any sort of type. If either
"source" or "destination" is an array, the array can be sub­
scripted. If either "source" or -destination" is a record, a
field specification can be given.

For a MOVELEPT, the byte at "source" is moved to "destination"
and so on until the byte at "source"+"length"-l is moved to
"destination"+"length"-l. For a MOVERIGHT, the move starts from
the other e~d, so that the byte at "source"+"length"-l is moved
to "destination"+"length"-l and so on until the byte at "source"
is moved to ·destination" •
... t-

Neither MOVELEFT nor MOVERIGHT perform any range checking.
They should therefore be used with a modicum of caution.

Example of MOVE LEFT

The example shown below illustrates how MOVELEFT can be used to
·zero fill" an array.

var
manifold: array[l •• 100] of -128 •• 1271

manifold [1] :m 0, {place an initial zero }
MOVELEFT(manifold[l], manifold [2] ,99);

8.7.2 FILLCHAR - Fill A Storage Region With A Character

FILLCHAR is a procedure that replicates a byte throughout a
region of storage. The procedure definition of FILLCHAR is:

procedure FILLCHAR(v,.r address1 integer count; char byte);

address

count

byte

Page 94

is the address of an arbitrary storage location
o in memory. Note that 'address' is a var par ame-
ter to FILLCHAR, so it may not be the address of
a packed object.

is the number of times that the next parameter
'byte' should be replicated.

is a single character value which is replicated
throughout the region of storage starting at
, address' aond ending at 'address' +' count' -1.

Pascal Reference Manual

Chapter 8 Standard Procedures and Punctions

Example of PILLCBAR

The example shown below illustrates how PILLCHAR can be used to
"space fill" a print buffer

var
printbuf: array(l •• 256] of char7

PILLCHAR(printbuf, 256, I I)i

8.7.3 SIZEOP - Determine Size of Data Element or Type

SIZEOP is a function that returns the number of bytes that a
variable or type is allocated. The function definition of SIZEOF
is:

function SIZEOP(identifier): integer 7

where "identifier" is a variable name or a type identifier. The
SIZEOP function is particularly useful as a parameter to MOVELEPT
or MOVERIGBT, or in performing unit input-output, where the
number of bytes to transfer must be known.

8.7.4 POINTER - Convert Integer Expression to Pointer

POINTER converts an integer expression to a pointer value. The
function definition of POINTER is:

function POINTER(expression): universa17

POINTER converts the "expressionw, which must be an integer
expression, to a pointer value. The result type of POINTER is a
"universal" pointer type that has the type of nil, which means
that it may be assigned to any pointer variable.

8.8 Control Procedures

8.8.1 EXIT - Exit from Procedure

EXIT provides the means to "get out of" a procedure prema­
turely. EXIT finds especial use in recursive applications such
as expression evaluators or tree-walking procedures. Its effect
is to cause an immediate (and clean) return from a named pro­
cedure or function. The procedure definition of EXIT is:

EXIT(name);

where "name" is the name of the procedure or function to be
exited.

Pascal Reference Manual Page 95

Standard Procedures and Functions Chapter 8

If the -name- parameter is the name of a recursive procedure or
function, the most recent activation of that procedure or func­
tion is terminatea:-

Files that are local to an EXIT'ed procedure or function are
not implicitly closed upon exit - they must be closed explicitly
before the EXIT statement.

If an EXIT statement is made inside a function before any
assignment is made to the function identifier, the result of the
function is undefined.

~ EXIT is exactly the same as a goto a label at the end of the
named procedure or function.

8.8.2 HALT - Terminate Program with Return Value

The HALT procedure terminates the currently executing program.
HALT returns a value to the host operating system to indicate a
successful termination or an error termination. The procedure
definition of the HALT procedure is:

HALT(i: integer)1

The -i- parameter is optio~al. If the ~i" parameter is omit-
ted, by. simply executing a .

HALT

statement, the correct -no error" code is returned to the host
operating system.

The HALT procedure also returns a value to the CALL function,
described below.

A list of the values which the HALT procedure can return can be
found in Appendix A - -Messages from the Pascal System-.

8.8.3 CALL - Call up Another Program

The CALL function requests the host operating system to execute
another program. The function definition of CALL is:

function CALL(pathname: stringtype1
var infile, outfile: interactive I text;
fargv: ?; farge: integer): integer;

The parameters to the CALL function are:

pathname

Page 96

is a string containing the pathname of the file
in which the program resides which is to be run.

Pascal Reference Manual

Chapter 8 Standard Procedures and punctions

The definition of what constitutes a pathname is
operating system dependent.

infile and outfile

fargv

fargc

specify the standard input and standard output
for the program specified by ·pathname". In
addition, the definition specifies whether the
standard input and standard output files for that
program are text files residing in the file sys­
tem, or the user's terminal.

is an array of pointers to strings consisting of
the options and filename arguments for the pro­
gram in question. -

is an integer count of the number of arguments in
·fargv·.

The value returned from the CALL function is either the value
which a program returns via a HALT call, or is one of the operat­
ing system error codes.

NOTE: The CALL function is not available under all operating
systems. See Appendix G for specifics about this operating sys­
tem.

Pascal Reference Manual Page 97

Standard Procedures and Functions C~apter 8

Page 98 Pascal Reference Manual

Chapter 9 Pascal Compile Time Options

Chapter 9 - Pascal ca.pile Tiae Options

Pascal compile-time options are introduced via toggles embedded
in comments. Comment toggle format is like:

(*$T params*)
or

{$T params}

where either the (* and *) form, or the { and } form of comment
delimiters may be used.

The toggle must immediately follow the opening comment delim­
iter, with no intervening spaces.

A comment toggle is always introduced by a $ sign. The $ sign
is followed by the toggle letter, either in upper or lower case,
followed by the parameters for that toggle. Compiler options
that are followed by a + or - may be given in a list:

{$C+,I+,L- •••• } .
There must not be any spaces after the commas in the list. Scan­
ning of a list of compiler options terminates Lf any incorrect
syntax is encountered.

Compiler options do not obey any of the Pascal scope. rules.
Once an option is selected by a toggle, it remains in effect
until another toggle in the source text de-selects that option.
Compiler options are described in the list below.

Some of the descriptions of the compiler options make refer­
ences to the options specified on the compiler command line. A
description of the command line options can be found in Appendix
G - "Using The Pascal Compiler".

$C+ or $C-

$E filename

Turns Code generation on .(+) or off (-). This is
done on a ~rocedure by procedure basis. The value
of the opt1ons at the end of a procedure controls
code generation. The default is C+.

starts listing Errors to the file specified by
"filename". Also see the $L option below.

Pascal Reference Manual Page 99

Pascal Compile Time Options Chapter 9

$N+ or $N-

$1 filename

~I+ or $I-

$L filename

$L+ or $L-

$M+ or $M-

$F+ or$F-

$P+ or $P-

$Q+ or $Q-

Page 100

Check the result of floating point expressions
for validity. If this.option is enabled, then
the VALUE of most floating point expressions are
checked for the values Not A Number and INFINITY.
If present, a run time error is caused. The
default is off.

Include the file specified by "filename" at this
point in the source.

Turn automatic Input Output checks on (+) or off
(-). The default is 1+.

Make a compilation Listing on the file specified
by "filename". If i listing file already exists,
that file is closed and saved before the new file
is opened.

Turn Listing on (+) or off (-) without changing
the risting file name. The listing filename must
be specif~ed before turning listing on. The
default 1S $L+ (listing on) when a listing file
has been specified' on the compiler's command line
or $L- (listing off) when a listing file was not
specified. When the list option is on, the list­
ing is directed to whatever list file was speci­
fied on the'Pascal compiler's command ~ine.

The $M+ option specifies that the ,Pascal run-time
system should check the stack and heap for over­
flow upon entry to each procedure. The $M+
option enables the check. The $M- option dis­
ables the check. The default setting is $M-
(disable the check).

Generates code to use floating point hardware (+)
or software (-). In those implementations
without floating point hardware, this option is
ignored. The default is off (i.e. use software) • .
Specifies whether the Pascal compiler should
prompt the user for corrective action when errors
are detected. The $P+ option indicates that the
compiler should prompt the user as to whether to
continue the compilation when errors are
detected. The $P- option disables the prompting
feature. This feature is also available via the
-p or +p option on the compiler command line.
The default setting of the $P option is operating
system dependent.

Controls the amount of messages that the Pascal
compiler prints while compiling a program. The

Pascal Reference Manual

Chapter 9

$R+ or $R-

$8 segment

$S+ or $S-

$U filename.

$%+ or $%-

Pascal Compile Time Options

$0+ option results in fewer messages. The $0-
option results in more messages. The default
setting of the $0 option depends upon the operat­
ing system on which the Pascal system is running.

Turns run-time Range checking on (+) or· off (-).
At present, range checking is done in assignment
statements, on array indexes, and for string
value parameters. The default setting is $R+.

Range checking is only done for user defined
subrange, and SCALERS and for array indexing.
The type integer is NEVER range checked.
Compile-time range checking (i.e. v:-constant)
for user defined types is always enforced.

Places code modules into the Segment specified by
• segment" The default segment name is • •
(eight spaces), which is where the main program
and all built-in support code is always linked.
All other code can be placed into any segment.
Onder most operating systems segmentation is
automatically done by the system and there is no
reason to explicitly segment programs (See Appen­
dix G for more specific information if segmenta­
tion is meaningful in your environment).

Is the swapping option. The $8+ option specifies
that the compiler should run in swapping mode.
The $S- option specifies that the compiler should
not run in swapping mode. In operating systems
which support generalized overlay schemes, swap­
ping mode means that the compiler runs in less
memory, at the expense of a considerable speed
penalty. The $S+ option (if used) must appear
before the initial program or unit header, else
the option has no effect. The default setting
is $S- (do not run in swapping mode).

Searches for subsequent Units in the file speci-
fied by ·filename". -

Specifies that the percent sign , is a valid
character (+) or is not a valid character (-) in
identifiers. The default is $%-.

Pascal Reference Manual Page 101

Pascal Compile Time Options Chapter 9

Page 102 Pascal Reference Manual

Appendix A Messages from the Pascal System

Appendix A - Messages froa the Pascal System

This appendix describes the error messages that the·Pascal sys­
tem generates.

A.l Compile Time Lexical Errors

10 Too many digits
11 Digit expected after 1.1 in a real number
12 Integer Overflow
13 Digit expected in the exponent of a 'real number
14 End of line encountered in a string constant
15 Invalid character in input
16 Premature end of file in source program
17 Extra characters encountered after the end of the program
18 End of file encountered in a comment

A.2 Compile Time Syntactic Errors

20 Illegal symbol
21 Error in simple type
22 Error in declaration part

.23 Error in parameter list of a procedure or function
24 Error in constant
25 Error in type
26 Error in field list of a record declaration
27 Error in factor of an expression
28 Error in variable
29 Identifier expected

30 Integer expected
31 1 (1 expected
32 1)1 expected
33 '[I expected
34 'l' expected
35 I:' expected
36 'I' expected
37 '=' expected
38 ',' expected
39 '*' expected

Pascal Reference Manual Page 103

Messages from the Pascal System Appendix A

40
41
42
43
44
45
46
47
48

50
51
52
,.53

A.3

100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115

116

117

t l18
1119

120
121
122
,123
~124

125
126

127
128

I :=1 expected
prograa keyword expected
of keyword expected
begin keyword expected
end keyword expected
then keyword expected
until keyword expected
do keyword expected
to or downto keyword expected

if keyword expected
1.1 expected
t.pleaentation keyword expected
interface keyword expected

Compile Time Semantic Errors

Identifier declared twice in the same block
Identifier is not of the appropriate class
Identifier not declared
Sign not allowed
Number expected
Lower bound exceeds upper bound
Incompatible subrange types
Type of constant must be integer
Type must not be real
Tagfield must be a scalar or subrange

Type incompatible with tagfield type
Index type must not be real
Index type must be scalar or subrange
Index type must not be integer or longint
Unsatisfied forward reference
Forward reference type identifier cannot appear in a vari­
able declaration
Forward declaration repetition of parameter list not
allowed
Forward declared function - repetition of result type not
allowed
Function result type must be scalar, subrange, or pointer
File is not allowed as a value parameter

Missing result type in function declaration
F-format for real type only
Error in type of parameter to a standard function
Error in type of parameter to a standard procedure
Number of actual parameters does not agree with declaration
Illegal parameter substitution
Result type of parametric function does not agree with
declaration
Expression is not of set type
Only tests for equality allowed

Page 104 Pascal Reference Manual

Appendix A Messages from the Pascal System

'129 Strict inclusion not allowed

130 Comparison of file variables not allowed
131 Illegal type of operand(s)
132 Operand type must be boolean
133 Set element type must be scalar or subrange
134 Set element types not compatible
135 Type of variable is not array or string
136 Index type is not compatible with declaration
137 Type of variable is not record
138 Type of variable must be file or pointer
139 Illegal type of loop control variable

140 Illegal Expression type
141 Assignment of files not allowed
142 Case selector incompatible with selecting expression
143 Subrange bounds must be scalar
144 Operand type conflict
145 Assignment to standard function is not allowed
146 Assignment to formal function is not allowed
147 No such field in this record
148 Type error in read
149 Actual parameter must be a variable

150 Multiply defined case selector
151 Missing corresponding variant declaration
152 real or string tagfields not allowed· in variant record
153 Previous declaration was not forward
154 Substitution of standard procedure or function not allowed
155 Multiple defined label
156 Multiple declared label
157 Undefined label
158 Und~clared label
159 Value parameter expected

160 Multiple defined record variant
161 Pile not allowed here
162 Unknown compiler directive (not external or forward)
163 Variable cannot be a packed field
164 Set of real is not allowed
165 A field of a packed record cannot be a var parameter
166 Case selector expression must be a scalar or a subrange
167 String sizes must be equal
168 String too long
169 Value out of range

170 Cannot take the address of a standard procedure or function
171 Assignment to function result must be done inside that func-

tion
172 Control variable of a for statement must be local
173 BUFFERED or UNBUFFERED expected
174 NORMAL, LOCK, PURGE, or CRUNCH expected
175 Pile variable expected

Pascal Reference Manual Page 105

Messages from the Pascal System Appendix A

176 Must be within the procedure or function being exited
177 Cannot pass cexternal as procedure or function parameter
178 Label value must be 0 to 9999

190 No such unit in this file

A.4 Specific Limitations of the Compiler

300 Too many nested record scopes
301 Set limi ts out of range (maximum sized se.t is 0 •• 2031)
302 String limits out of range
303 Too many nested procedures or functions
304 Too many nested include or uses files
305 Include not allowed in interface section
306 Pack and unpack are not implemented
307 Too many units
308 Set constant out of range
309 Maximum comparable packed array of ,char is of size 255 char­

acters

310 Too many nested with statements
311 Too many nested function references
312 Record too big (maximum size is 32766 bytes)
313 Too many elements in an array (maximum size or elements is

32766)
314 Too many variables in one scope (maximum is 32766 bytes)

350 Procedure too large
351 File name in option too long

A.5 Input Output Errors

400 Not enough room for code file
401 Error in rereading code file
402 Error in reopening text file
403 Unable to open uses file
404 Error in reading uses file
405 Error in opening include file
406 Error in rereading previously read text block
407 Not enough room for intermediate code file
408 Error in writing code file
409 Error in reading intermediate code file

410 Unable to open listing file

A.6 Code Generation Errors

1000+ Code generator errors - in theory should never happen

Page 106 Pascal Reference Manual

· Appendix A Messages from the Pascal System

Normally these errors indicate that an erroneous .1 file has
been specified as the input file to the code generator.

A.7 IORESOLT Error Codes

The codes listed below are those that the IORESOLT function
returns.

o No Error - indicates a good result
1 Parity error or CRC error
2 Invalid device number
3 Invalid input-output. request
4 Nebulous Hardware Error
5 Volume went off-line
6 Pile lost in directory
7 Bad file name
8 No room on volume
9 Volume not found

10 Pile not found

11 Duplicate directory entry
12 File already open
13 File not open
14 Bad input information
15 Ring buffer overflow
16 Write protect
17 Invalid seek 64 Device error of unknown origin

Pascal Reference Manual Page 107

Messages from the Pascal System Appendix A

Page 108 Pascal Reference Manual

Appendix B Pascal Language Summary

Appendix B - Pascal Language Su.mary

•••• ·what is the use of repeating all that stuff", said
the Mock Turtle, "if you don't explain it as you go along.
It's by far the most confusing thing I ever heard!" ••••

Lewis Ca~roll. Through the Looking Glass

B.l Predefined Identifiers

Constants

Variables

maxint

Boolean
char

Argc
Stderr

Procedures

Functions

CLOSE
DELETE
DISPOSE
EXIT
FILLCBAR
GET
GOTOXY

ABS
ARCTAN
BLOCKREAD
BLOCKWRITE
CHR
CON CAT
COPY
COS
EOF

Pascal Reference Manual

'!'RUE PALSE

interactive lODgint
integer real

Argv

HALT
INSERT
MARK
MOVE LEFT
MOVERIGHT
NEW
PAGE

EOLN
EXP
FILLCHAR
IORESULT
ISINF
ISNAN
ISNUM
LENGTH
LN

Input

PUT
READ
READLN
RELEASE
RESET
REWRITE
SEEK

MEMAVAIL
ODD
ORO
ORD4
POINTER
POS
PRED
PWROFTEN
ROUND

text
double

Output

ONITCLEAR
ON I TREAD
UNITSTATUS
UNITWRITE
WRITE
WRITELN

SCANEQ
SCANNE
SIN
SIZEOF
SQR
SQRT
SUCC
TRUNC
UNITBUSY

Page 109

Pascal Language Summary Appendix B

B.2 Pascal Syntax Definitions

Syntactic constructs enclosed between "angle brackets" <
and > define the basic language 'elements. Every language
construct should eventually be defined in terms of basic
lexical constructs defined in the remainder of this appen­
dix.

A construct appearing outside the angle brackets stands
for itself, that is, it is supposed to be self denoting.
Such a construct is known as a terminal symbol. Terminal
symbols and reserved words appear in bold face text
throughout this manual.

The symbol ::a is to be read "defined as".

The symbol •• means "through", indicating an ordered
sequence of things where only the start and end elements are
specified. (The reader is left to infer the middle ele­
ments). Por example, the notation 'a' •• 'z' means "the
ordered collection starting with the letter 'a', ending with
the letter 'z', and containing the letters 'be, ·c· •••• 'x',
'y' in between". In other words, all the lower case
letters.

The "vertical bar" symbol I is read as "or". It separates
sequences of elements that represent a choice of one out of
many.

The metalanguage construct { ••• } (elements inside braces)
enclose elements which are to be repeated "zero to many
times". Although the braces are also used as one of the
forms of comment delimiters in Pascal, this should not cause
any ambiguity. The one case where ambiguity would occur is
in the definition of comments, and this is explicitly
pointed out at that time.

The Pascal compiler recognizes the following alphabet or char­
acter set:

<letter>

<digit>

<hex digit>

<ASCII graphic characters>

Page 110

.. -· .-
· .-· .-
· .-· .-
~:=

I A' •• I Z' , I a ' •• 'z', and , ,

, 0' , 9 '

<digit> I a I . . , f' 'A' . . IF I

" I $, &
,

() * =
+ - r

. t. < > ? \ [
@

,.. - { } .] ; .

Pascal Reference Manual

Appendix B Pascal Language Summary

<identifier> ::- <letter> { <letter> I <digit> }

<unsigned integer> ::- <digit> {<digit>}
<unsigned real> ::-

<unsigned integer>.<unsigned integer>
<unsigned integer>.<unsigned integer>B<scale factor>
<unsigned integer>B<scale factor>
<unsigned integer>.<unsigned integer>D<scale factor>
<unsigned integer>D<scale factor>

<unsigned number> ::- .<unsigned integer>

<scale factor> ::- <unsigned integer>

<sign> ::- + I -

<unsigned real>

<sign><unsigned integer>

<hex number> ::- $<hex digit> {<hex digit>}

<string> ::- '<character> {<character>}'

<character value> ::- \<two digit hexadecimal number>

<label> ::- <unsigned integer>

<comment> ::= {<any printable characters except -}-> }
I (* <any printable characters except -.)- *)

<any printable character> includes carriage-return, line-feed,
tab, and so on.

<constant identifier> ::- <identifier>

<constant> :r-= <unsigned number>
<sign> <unsigned number>

<constant identifier>
<sign> <constant identifier>

<string>

<constant definition> ::- <identifier>. <constant>

<type declaration> ::= type <type spec> {,<type spec>}

<type spec> ::- <type identifier> - <Pascal type>

<simple type> ::= <scalar type>
<standard type>

<subrange type>
<type identifier>

<scalar type> ::= «identifier> {,<identifier>})

Pascal Reference Manual Page 111

Pascal Language Summary Appendix B

<subrange type> ::=
<subrange type identifier> I <lower> •• <upper>

<lower> ::= <signed scalar constant>
<upper> ::= <signed scalar constant>
<structured type> ::a <unpacked structured type>

packed <unpacked structured type>

<unpacked structured type> ::= <array type>
<string type>

<record type>
<set type>

<file type>

<array type> : : = array [<index list>] of <type>

<index list> : := <simple type> { , <simple type>}

<component type> : := <type>

<string type> : : = string[<static length>]

<static length> ::= integer constant in the range 1

<record type> ::= record <field list> end;
<field list> ::= <fixed part>

I . <fixed part> , <variant part>
. <variant part>

. . 255

<fixed part> ::= <record section> {, <record section>}
<record section> ::= <field identifier list> : <type>
<field identifier list> ::= <field identifier> {,<field identifier>}

<variant part> ::=
case {<tag field>} <type identifier> .of <variant list>

<variant list> ::= <variant> {, <variant>}
<variant> ::= <case label list> : «field list»
<case label list> ::= <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

<set type>

<file type>

~Page 112

: : =

.. -.. -

set of <simple type>

file of <type>
file

·Pascal Reference Manual

Appendix B Pascal Language Summary

<pointer type> ::= A<type identifier>
<variable declaration> ::-

<identifier> {,<identifier>}: <data type>J

<variable> ::- <entire variable>

I <component variable>
<referenced variable>

<entire variable> ::= <variable identifier>

<component variable> ::= <indexed variable>
<field designator>

<file buffer>

<indexed variable> ::- <array variable> <subscript list>

<subscript list> ::- [<expression> {,<expression>}]
I [<expres~ion>] {[<expression>]

<field designator> ::- <record variable>.<field identifier>

<file buffer> ::= <file variable>A
<file variable> ::= <variable>

<referenced variable> ::= <pointer variable>A

<pointer variable> ::- <variable>
<unsigned constant> ::- <unsigned number>

<string>
<constant identifier>

nil

<factor> ::- <variable>
<unsigned constant>

<function designator>
<set constructor>

«expression»
not <factor>

<set constructor> ::= [<element> {,<element>}]
<element> ::= <expression>

<expression> •• <expression>

<term> ::= <factor>
<term> <multiplying operator> <factor>

Pascal Reference Manual Page 113

Pascal Language Summary Appendix B

<simple expr> ::= <term>
<simple expr> <adding operator> <term>

<adding operator> <term>

<expression> ::=
<simple expr>

I <simple expr> <relational operator> <simple expr>

<multiplying operator> ::= * / div mod and

~~~ 
<adding operator> : : = + or 

<sign operator> : := + I -
<relational operator> .. -.. - =- I <> I > I < I >=- I <= in 

<assignment statement> ::= 
<variable> := <expression> 

<function identifier> := <expression> 

<procedure call statement> ::= 
<procedure identifier><actua~ parameter list> 

<procedure identifier> 

<actual parameter list> ::= 
«actual parameter> {,<actual parameter>}) 

<actual parameter> ::= <expression> 
<procedure identifier> 

<function identifier> 

<structured statement> ::= <begin statement> 

<begin statement> .. -.. - begin 

<if statement> 
<while statement> 

<repeat statement> 
<for statement> 

<case statement> 

<statement list> end 

<statement list> ::= <statement> {J <statement>} 

<if statement> ::= 
if <Boolean expression> then <statement> 

Page 114 Pascal Reference Manual 



Appendix B Pascal Language Summary 

if <Boolean expression> then <statement> else <statement> 

<case statement> ::~ case <expression> of <cases> 
. {otherwise: <statement>} end, 

<cases> ::~,<a case> {, <a case>} 
<a case> ::-

<selection spec> {, <selection spec>} : <statement> 

<selection spec> ::- <simple constant scalar expression> 

<while statement> ::- while <expression> do <statement> 

<repeat statement> ::- repeat <statement> antil <expression> 

<for statement> ::~ 
for <control variable> := <for list> do <statement> 

<for list> ::= <initial value> to <final value> 
I <initial value> downto <final value> 

<control variable> ::- <identifier> 

<initial value> ::~ <expression> 
<final value> ::~ <expression> 

<with statement> ::= 
with <record variable> {,<record variable>} 

do <statement> 

<goto statement> ::= goto <label> 

<unit> ::= unit <identifier>, 
<interface part> 

<implementation part> 
end. 

<interface part> ::= interface 
<uses clause> 

<constant definition part> 
<type definition part> 
<variable definition part> 
<proc~dure and function declaration part> 

Pascal Reference Manual Page 115 



Pascal Language Summary Appendix B 

<implementation part> ::= iJaplementation 
<label declaration part> 
<constant definition part> 

<type definition part> 
<variable definition part> 

<procedure and function declaration part> 

<uses clause> ::= uses <unit name> {,<unit name>} 

<declaration> ::= <constant declaration> 
<type declaration> 

<variable declaration> 
~ . <procedure or function declaration> 

<program> ::= <program heading> <block>. 

<program heading> ::= 
program <identifier> «program parameters»J 

<program parameters> ::= <identifier> {,<identifier>} 

<label declaration part> ::= label <label> {, <label>}~ 

<constant definition part> ::= const <constant definition list>1 

<constant definition list> ::= 
<constant definition> {; <constant definitiol 

<type definition part> ::= type <type definition list>~ 

<type definition list> ::= <type definition> {~ <type definition>} 

<variable declaration part> ::= var <variable declaration list> 

<variable declaration list> ::= 
<variable declaration> {;<variable declaration>} 

<procedure declaration> ::= <procedure heading> <block> 
<function declaration> ::= <function heading> <block> 

<block> ::= <label definition part> 

Page 116 

<constant definition part> 
<type definition part> 

<variable declaration part> 
<procedure and function declaration part> 

<statement part> 

Pascal Reference Manual 



Appendix B Pascal Language Summary 

<statement part> ::- begin <statement list> end 

<statement list> ::- <statement> {, <statement>} 

<procedure heading> ::-
procedure <identifier>, {<attribute>,} . 

I procedure <identifier> «formal parameters», 
{<attribute>,} 

<function heading> ::­
function.<identifier>:<result type>, {<attribute>,} 
I function <identifier> «formal parameters»: 

, <result type>, {<attribute>,} 

<formal parameters> ::- <formal parameter> {,<formal parameter>} 

<formal parameter> ::a <parameter group> 
var <parameter group> 

<procedure heading> 
<function heading> 

<parameter group> ::-
<identifier> {,<identifier>}:<type identifier> 

<attribute> ::- external forward cexternal 

<result type> ::= <simple type> 

Pascal Reference Manual Page 117 



Pascal Language Summary Appendix B 

Page 118 Pascal Reference Manual 



Appendix C Relationships to ISO Pascal 

Appendix C - Re1ationships to ISO Pasca1 

Myself when young did eagerly frequent 
Doctor and Saint, and heard great argument 

About it and about: but evermore 
Came out by the same door as in I went • 

••••••••• Omar Khayam, The Rubaiyat 

The International Standards Organization (ISO) and the American 
National Standards Institute (ANSI) are engaged in a joint effort 
to define a Pascal Standard. 

In general, SVS Pascal conforms to the (proposed) 
standard as defined in Pascal User Group News, 
December 1980. There are however some differences 
spelled out here. 

ISO Pascal 
Number 20, 

that are 

In SVS Pascal, thirty-one characters are significant in iden­
tifiers. Linkable external names have only eight significant 
characters. 

The Pascal standard procedures PACK and UNPACK are not sup­
plied. 

Conformant arrays are not implemented in accordance with the 
level 0 (U.S) standard. 

There is a small difference in the way that a text file is han­
dled if the text file is associated with an interactive terminal. 

There is a string basic data type implemented. 

There is a double basic data type implemented. 
data type is a double precision real data type. 

The double 

There is an otherwise clause in the case statement. This pro­
vides for a "what to do if the case selector matches none of the 
cases". Standard Pascal considers this situation an error. 

SVS Pascal implements a longint data type, which occupies four 
bytes instead of the two bytes of the standard integer data 
type. 

Pascal Reference Manual Page 119 



Relationships to ISO Pascal Appendix C 

The and, or, and not operators can be applied to operands of 
type integer as well as operands of type Boolean. When applied 
to operands of type integer, these operators perform bitwise log­
ical and, logical or, and logical not operations on their 
operands. 

SVS Pascal supports many extensions. These mainly derive from 
the OCSD P-System. 

\ 

Page 120 Pascal Reference Manual 



Appendix D Relationships to UCSD Pascal 

Appendix D Relationships to UCSD Pasca1 

The University of California at San Diego (UCSD) implemented a 
widely used Pascal system, oriented towards small, personal com­
puter systems. This implementation is known as UCSD Pascal. 

. SVS Pascal uses a number of ideas from UCSD Pascal. 
areas where SVS Pascal conforms to UCSD Pascal are: 

The main 

1. Independent compilation is supported through the unit con­
cept of OCSD Pascal. The interface, t.pleaentation and uses 
statements are implemented. 

2. There is an include capability. 

3. Many of the UCSD Pascal compatible standard procedures and 
functions are implemented the same as UCSD Pascal. 

D.l Differences from OCSD Pascal 

In SVS Pascal, the underline character is significant in 
identifiers. In UCSD Pascal it is ignored so that the identif­
iers "Space Out" and ·SpaceOut· are identical. In SVS Pascal 
they are considered two different identifiers. 

SVS Pascal supports a long integer type, with the predefined 
type name longint. The OCSD construct integer[nn] is not imple­
mented. 

There is a double basic data type implemented. 
data type is a double precision real data type. 

The double 

Fields of packed records and elements of packed arrays can 
never be passed as reference parameters to procedures, even in 
those places where UCSD Pascal allows. 

The SVS Pascal string type packed array[low •• high] of cbar must 
have a lower bound of 1 to be compatible with literal strings, or 
to be used in array comparisons. OCSD Pascal allows any lower 
bound. 

Pascal Reference Manual Page 121 



Relationships to UCSD Pascal Appendix D 

SVS Pascal does not have the reserved word segment. Conse­
quently there is no segaent procedure or segaent function. To 
segment a SVS Pascal program, use the $S compiler option, which 
directs the compiler to place generated object code in a named 
segment. See Chapter 9 which contains a section on compiler 
options. 

SVS Pascal does not implement unit initialization code. 

SVS Pascal does not supply special units such as APPLESTUFF or 
TURTLEGRAPHICS. 

SVS Pascal does not have any default string length. Instead of 
the declaration ' 

var x: stringJ 

use the declaration 

var x: striog[801J 

SVS Pascal does not have a predefined file called "keyboard". 

SVS Pascal implements sets with elements 0 through 2031, 
whereas UCSD Pascal implements 0 through 511. 

Packing algorithms for arrays _~nd records are different •. 

Internal storage for sets is different. 

SVS Pascal does not support comparison of arrays and records, 
with the single exception that packed array[l •• n] of char can be 
compared. 

Predefined string procedures and functions must have string 
variable or string literal parameters. That is, not packed array 
of cbar or char variable parameters. 

SVS Pascal does not implement the procedure STR, since there is 
no integer[nn] type. 

The file procedures RESET and REWRITE require two parameters, 
namely (file,string). 

End-of-file character from the keyboard is Control-D instead of 
Control-C. 

~. SVS Pascal text 'files must be declared as packed file of char. 

SVS Pascal text file reads allow additional parameters of 
packed array of char. 

Page 122 Pascal Reference Manual 



Appendix D Relationships to OCSD Pascal 

SVS Pascal text file writes allow additional parameters of 
packed array of cbar and Boolean. 

Under most operating systems, SVS Pascal does not implement the 
unit I/O routines such as ONITREAD, UNITWRITE, and UNITWAIT. 

SVS Pascal does not implement TREESEARCH. 

SVS Pascal limits the EXIT procedure to exiting statically com­
piled procedures or functions or the main-program. The argument 
to EXIT must be the name of the routine to exit. That is, 
EXIT (PROGRAM) is not allowed. 

The MEMAVAIL procedure returns the number of bytes of available 
memory. The return parameter is of the type lODgint. See the 
Section on -Memory Management-. Onder some operating systems 
MEMAVAIL is not meaningful. 

. SVS Pascal implements two procedures SCANEQ (scan equal) and 
SCANNE (scan not equal), whereas UCSD Pascal implements a single 
SCAN procedure with a • or <> parameter. 

SVS Pascal does not have any INTRINSIC units. 

SVS Pascal does not implement the unit initialization section 
in units. 

SVS' Pascal implements an ... optional otherwise clause in case 
statements. If the otherwise clause is present, it must be the 
last statement. For example: 

case huh of 
1: do thisf 
3,5: do thatf 

otherwise: -
do the other; 

end; - -

SVS Pascal implements true global goto statements. The UCSD 
Pascal {$G+} compiler option is not needed in order to use goto 
statements. 

SVS Pascal has predeclared variables ARGC and ARGV that 
describe the number and value of any parameters passed from the 
command line to a running program. 

Procedures and functions may be passed as parameters. The 
implementation is consistent with the proposed ISO standard Pas­
cal. 

ORD(Boolean Expression) works properly in SVS Pascal. 

Pascal Reference Manual Page 123 



Relationships to UCSD Pascal Appendix D 

The .ad operator works properly in SVS Pascal.' 

SVS Pascal has added the unary operator @, which stands for 
-address of-. Placing the @ in front of a variable, function, or 
procedure, generates the address of that entity. The type 
returned is the type of nil, that is, it can be assigned to any 
pointer variable. The @ operator does not work with most of the 
predefined procedures and functions such as ORO or READLN. 

SVS Pascal has added the function ORD4. It is the same as ORO 
except that it returns a 32-bit integer. 

~ All integer arithmetic operations are done at a precision of 
~ither 16 or 32 bits, depending. on the maximum size of any argu­
ments. The rules are similar to PORTRAN's single and double pre­

. cision reals. 

SVS Pascal statement labels are restricted to the range 0 
through 9999, as in the ISO Pascal standard. 

SVS Pascal provides for hexadecimal integer constants. A hexa­
decimal constant is prefixed with a $ sign. Hexadecimal numbers 
must be 32 bits long to be considered signed numbers, that is, 
$FFFF represents 65536, not -1. To represent -1, ·code the hexa­
decimal constant $FFFPFFFF. 

The and, or, and not operators can be applied to operands of 
type integer as well as operands of type Boolean. When applied 
to operands of type integer, these operators perform bitwise log­
ical and, logical or, and logical not operations on their 
operands. 

Page 124 Pascal Reference Manual 



Appendix E Data Representations 

Appendix B - Data Representations 

This appendix describes the ways that SVS Pascal represents 
data in storage, how that data is packed for data objects that 
have the packed storage attribute, and the mechanisms for passing 
parameters to procedures and functions. This appendix is 
intended as a guide to those programmers who wish to write 
modules in languages other than Pascal and have those modules 
interface to Pascal. 

E.l Storage Allocation 

This section describes the way in which storage is allocated to 
variables of various types. The storage allocation described ... 
here is for unpacked items. 

In general, any word value is always aligned on a word boun­
dary. Anything larger than a word is also aligned on a word 
boundary. Values that can fit into a single byte are aligned on 
a byte boundaory. 

A Boolean variable 

occupies one byte of storage, aligned on a byte 
boundary. A value of 0 represents the value 
false. A value of 1 represents the value true. 
Any other value is an ·undefined· Boolean value. 

A scalar (ordinal) type 

of 128 elements or less, occupies one byte of 
storage, aligned on a byte boundary. If there 
are more than 128 elements in the scalar types, 
it then occupies a word. Scalar types are 
assigned the values 0, 1, 2, 

Subrange elements 

in the range -128 •• 127 occupy one byte, aligned 
on a byte boundary. A subrange element in the 
range -32768 •• 32767 occupies one word, aligned 
on a word boundary. A subrange element greater 

Pascal Reference Manual Page 125 



Data Representations Appendix E 

than that occupies two words, aligned on a word 
boundary. 

An unpacked char element 

is considered to be a subrange of 0 •• 255. This 
means that it occupies a word. 

An integer element 

occupies one word, aligned on a word boundary. 

A 10ngint element 

real elements 

double elements 

occupies two words, aligned on a word boundary! 

occupy two words, aligned on a word boundary. A 
real element has a sign bit, an 8-bit exponent 
and a 24-bit mantissa. SVS Pascal real elements 
conform to the IEEE standard for reals as defined 
in the March 1981 Computer magazine. The layout 
of a real element is shown below. The range of 
real numbers is approximately -3.4E38 •• +3.4E38, 
with a precision of approximately seven decimal 
places. Normal arithmetic operations upon real 
data types can result in the "extreme values" of 
plus infinity, minus infinity, or Not a Number 
(NaN). These are described below. 

occupy four words, aligned on a word boundary. A 
double element has a sign bit, an ll-bit exponent 
and a 53-bit mantissa. SVS Pascal double elements 
conform to the IEEE standard for double precision 
as defined in the March 1981 Computer magazine. 
The layout of a double element is shown below. 
The range of double numbers is approximately 
-1.OD308 •• +1.OD308, with a precision of approx­
imately 15 decimal places. Normal arithmetic 
operations .upon double data types can result in 
the "extreme values· of plus infinity, minus 
infinity, or Not a Number (N~N). These are 
described below. 

Whatever the size of the data element in question, the most 
significant bit of the data 'element is always in the lowest num­
bered byte of however many bytes are required to represent that 

Page 126 Pascal Reference Manual 



Appendix E Data Representations 

object. The diagrams below should clarify this. 

E.2 Representation of Integers 

bit --> 7 o 
+--------+ 

8-bit integer I byte 0 I 
+--------+ 
15 o 
+-----~--+--------+ integer I byte 0 I byte 1 I 
+--------+--------+ 
31 o 
+--------+--------+--------+--------+ 

10ngint I byte 0 I byte 1 I byte 2 I byte 3 I 
+--------+--------+--------+--------+ 

E.3 Representation of Reals and Doubles 

real and double data elements are represented according to the 
proposed IEEE standard as defined i'n Computer magazine of March, 
1981. The diagrams below illustrate the representation. 

31 -30 23 22 o 
+---+----------------+----------------------------------------+ 
I s I Exponent Mantissa I 
+---+---------~------+--~-------------------------------------+ 

real B!!! Representation 
• 

The format for a real or single-precision floating-point number 
is as shown above. The three field of a rea1 are as follows: 

• a one-bit sign bit designated by "S" in the diagram above. The 
sign bit is a 1 if, and only if, the number is negative. 

• an a-bit biased exponent. The values of all ones and all zeros 
are reserved values for the exponent. 

• a 24-bit mantissa, with the high order 1 bit "hidden". 

Pascal Reference Manual Page 127 



Data Representations Appendix E 

63 62 52 51 o 
+--~+----------------+-------------~--------------------------+ I s I Exponent Mantissa 
+---+----------------+----------------------------------------+ 

I ~ntissa (52 + 1 bits) 
Exponent, biased by 1023 

Sign 

double Data Representation 

The parts of double numbers are as follows: 

~ a one-bit sign bit designated by ·S~ in the diagrams above. 
The sign bit is a 1 if, and only if, the number is negative • 

• an 11 bit biased exponent. The values of all zeros and all 
ones are a one-bit sign bit designated by "S" in the diagrams 
above • 

• a normalized 53-bit mantissa, with the high-order 1 bit "hid­
den". 

A real or double number is represented by the form: 

2exponent-bias * 1.f 

where 'f' is the bits in the mantissa. 

Normalized real and double numbers are said to contain a "hid­
den" bit, providing for one more bit of precision than would nor­
mally be the case. 

E.4 Representation of Extreme Numbers 

When real or double data elements are stored in the system, 
there arises the question of how to represent "values" such as 
positive and negative infinity. The discussion below describes 
the re~resentations of these extreme numbers, and their behavior 
~n expression evaluation. 

zero (signed) is represented by an exponent of zero, and a 
mantissa of zero. 

denormalized numbers 

Page 128 

are a product of "gradual underflow". They are 
non-zero numbers with an exponent of zero. The 
form of a denormalized number is: 

2exponent-bias+l * O.f 

Pascal Reference Manual 



Appendix E Data Representations 

where If' is the bits in the mantissa. 

signed infinity (that is, affine infinity) is represented by the 
largest value that the exponent can assume (all 
ones), and a zero mantissa. 

Not-a-Number (NaN) 

is represented by the largest value that the 
exponent can assume (all ones), and a non-zero 
mantissa. The .sign is usually ignored. 

Normalized real and double numbers are said to contain a whid­
denw bit, providing for one more bit of precision than would nor­
mally be the case. 

E.4.l Hexadecimal Representation of Selected Numbers 

+-----------+--~-------+------------------+ 
I Value real I double I 
+-----------+----------+----------------~-+ +0 00000000 0000000000000000 

-0 ·SOOOOOOO SOOOOOOOOOOOOOOO 

+1.0 3FSOOOOO 3FPOOOOOOOOOOOOO 
-1.0 BP800000 BPPOOOOOOOOOOOOO 

+2.0 40000000 4000000000000000 
+3.0 40400000 400S000000000000 

+Infinity 7PSOOOOO 7PFOOOOOOOOOOOOO 
-Infinity PFSOOOOO FFFOOOOOOOOOOOOO 

NaN 7PSxxxxx 7FFxxxxxxxxxxxxx 
+-----------+----------+------------------+ 

E.4.2 Deviations from the Proposed IEEE Standard 

Deviations from the proposed IEEE standard in this implementa­
tion are as follows: 

• affine mapping for infinities, 

• norm~lizing mode for denormalized numbers, 

• rounds approximately to nearest - 7 or more guard bits are com­
puted, but the ·sticky· bit is not, 

Pascal Reference Manual Page 129 



Data Representations Appendix E 

• exception flags are not implemented, 

• conversion between binary and decimal is not implemented. 

E.4.3 Arithmetic Operations on Extreme Values 

This subsection describes the results derived from applying the 
basic arithmetic operations on combinations of extreme values and 
ordinary values. 

No traps or any other exception actions are taken. 

~. All inputs are assumed to be positive.' Overflow, underflow, 
and cancellation are assumed not to happen. 

In all the tables below, the abbreviations have the following 
meanings: 

+--------------+----------------------------------+ I Abbreviation I Meaning 
+--------------+----------------------------------+ 

Den Denormalized Number 
Num Normalized Number 
Inf Infinity (positive or negative) 
NaN Not a Number 
Ono Unordered 

+--------------+------------------------------~---+ 

+---------------------------------------------------+ 
I Addition and Subtraction I 
+-----------+---------------------------------------+ 

Left 
Operand 

o 

Right Operand 
o Den I Num Inf NaN 

+-------+-------+-------+-------+-------+ 
o Den I Num Inf NaN I 

+-----------+-------+-------+-------+-------+-~-----+ I Den I Den I Den I Num I Inf I NaN I 
+-----------+--~----+-------+-------+-------+-------+ 

Num Num Num Num Inf NaN 
+--~--------+-------+-------+-------+-------+----~--+ 

Inf Inf I Inf Inf 1 Note 11 NaN 
+-----------+-------+-------+-------+-------+-------+ 

NaN NaN I NaN NaN NaN NaN 
+-----------+-------+-------+-------+-------+-------+ 

Note ~: Inf + Inf = Inf; Inf - Inf = NaN 

Page 130 Pascal Reference Manual 



Appendix E Data Representations 

+---------------------------------------------------+ I Multiplication I 
+-----------+---------------------------------------+ 

Left Right Operand 
Operand 0 I Den I Hum I Inf I NaN 

+-------+-------+-------+-------+-------+ 
o I 0 I 0 I 0 I HaN I HaN I +-----------+-------+-------+-------+-------+-------+ 

Den 0 0 I Num Inf I NaN 
+-----------+-------+-------+-------+-------+-------+ 

Num I 0 I Num I Num I Inf I NaN I 
+-----------+-------+-------+-------+-------+-------+ 
I Inf I NaN I Inf I Inf I Inf I NaN I 
+-----------+-------+-------+-------+-------+-------+ 

NaN NaN NaN I NaN NaN NaN 
+-----------+-------+-------+-------+-------+-------+ 
+---------------------------------------------------+ 

Division 
+-----------+---------------------------------------+ 

Left 
Operand I 

Right Operand I 
o Den I Hum I Inf I NaN 

+-------+-------+-------+-------+--~~~--+ o I NaN 0 0 0 I NaN I 
+-----------+~------+---~---+-------+-------+-------+ Den I Inf I Hum I Num I 0 I NaN I 
+-----------+-------+-------+-------+-------+~------+ I Num I Inf I Hum I Num I 0 I NaN I 
+-----------+-------+-------+-------+-------+-------+ 

Inf Inf Inf I Inf NaN NaN 
+-----------+-------+-~-----+-------+-------+-----~-+ 

NaN NaN I NaN I NaN NaN NaN 
+-----------+-------+-------+-------+-------+-------+ 

Pascal Reference Manual Page 131 



Data Representations Appendix E 

+----------------------~----------------------------+ I Comparison 
+-----------+-------------------~-------------------+ Left 

Operand o 
Right Operand 

I Den I Num I Inf NaN 

+-------+----~--+-~-~---+-------+-------+ 
o I = I < 1 < I < I Uno I +-----------+-------+-------+-------+-------+-------+ 

Den > < < Uno I 
+-----------+-------+-------+-------+-------+-------+ 

Num > > < I Uno I 
+-----------+-------+-------+-~-----+-------+-------+ 

Inf > > > I Uno 
+-----------+-------+-------+-------+-------+-------+ 

NaN Uno Uno Uno Uno I Uno 
+-----------+-------+-------+-------+-------+-------+ 

Notes: 

NaN compared with NaN is Unordered, and also results in inequali 

+0 compares equal to -0. 

Page 132 Pascal Reference Manual 



Appendix E Data Representations 

+-~-------------------------------------------------+ I Max I 
+-----------+--------------------------------------~+ Left Right Operand 

Operand 0 I Den I Num I Inf I NaN 
+-------+-------+-------+-------+-------+ 

o I 0 I Den I Num I Inf I NaN I +-----------+-------+-------+-------+-------+-------+ 
Den I Den Den Num Inf NaN I 

+-----------+-------+-------+-------+-------+-------+ 
I Num I Hum Hum Num Inf I NaN I 
+-----------+-------+------~+-------+-------+-------+ I Inf I Inf I Inf I Inf I Inf I NaN I 
+-----------+-~----+-------+-------+-------+-------+ NaN NaN -I NaN NaN I NaN I NaN I 
+-----------+-------+-------+-------+-------+-------+ 
+---------------------------------------------------+ 
I Min . I +-----------+---------------------------------------+ 

o~:~=nd I 0 I R~:~t IPe~::d I Inf I NaN· I 
+-------+-------+-------+-------+-------+ 

o o o o o -I NaN .1 
+-----------+-------+-------+-------+-------+-------+ 

Den 0 I Den I Den 1 Den I NaN I 
+-----------+-------+-------+-------+-------+-------+ 
I Num 1 0 Den 1 Num I' Num NaN 
+-----------+-------+-------+-------+-------+-------+ 
I Inf I 0 I Den I Num I Inf I NaN 
+-----------+-------+-------+-------+-------+-------+ I NaN I NaN I NaN I NaN I NaN I NaN I 
+-----------+-------+-------+-------+-------+-------+ 

E.5 Representation of Sets 

SVS Pascal represents a set like a "giant integer·. The zeroth 
element of a set is always present in the set. Suppose that a 
type and a variable are defined as in this example. 

type 
days_in_year = set of 1 •• 366: 

var 

Pascal Reference Manual Page 133 



Data Representations Appendix E 

The representation for the variable "blarg" is as in the diagram 
below: 

bit --> 366 o 
+~~~-+----+----+----+----+----+----+----+----+----+----+ 

byte-> I 0 I·· · · · · · · · · .. I I 45 I" 

+----+----+----+----+----+----+-~--+----+----+----+----+ 

The number of bytes required to contain this a set of 1.. 366 
is 366/8 which is 46 bytes. The ~torage is allocated accordingly 
as shown in the above diagram. The value 366 mod 8 is 6, and 
there is one unfilled bit in the least significant byte of the 
set. 

E.6 Representation of Arrays 

Components of unpacked arrays and records are allocated con­
tiguously as defined above. There is no attempt made to conserve 
space in units smaller than bytes. 

Arrays are stored in row order, that is, the last index varies 
fastest. This follows from the strict definition that a multi­
dimensional array in Pascal is actually an: . 

array[first index] of array[second index] ••••• 
of array[n'th index] of whatever type; 

E.6.1 Representation of Pointers 

Pointers always occupy four bytes. 
represented by a value of zero (0). 

E.7 Packing Methods 

. 

The nil pointer is 

Packed records are expensive in terms of the amount of gen­
erated code needed to reference a field of a packed record. In 
general, avoid packing records unless there are many more 
instances of a particular records than there are references to 
it. 

Components of a packed record are allocated in the order in 
which they appear. Components never cross word boundaries. The 
allocator never backtracks to fill in holes in the structure. 

Within a word, components are allocated on bit boundaries. The 
allocation proceeds from the least significant end of the word 
towards the most' significant end. If there is not enough room in 
the current word for a component, a hole is left in the current 
word, and the next word is started. 

Page 134 Pascal Reference Manual 



Appendix E Data Representations 

After allocation, it is possible that the allocator might shift 
and expand fields in a word to utilize what would otherwise be 
holes in the record. For example, a signed field might be 
expanded to use the remainder of a word for faster access, or two 
S-bit fields might be allocated a full byte each. The diagrams 
below provide graphic illus~rations of the packing methods. In 
each case, a type definition is given, followed by a diagram of 
how that type is allocated. 

packed record 
a: 0 · . 7; 
b: char; 
c: 0 · . 3; 
d: Boolean; 
e: 0 • • 3; 

e~; 

bit --> 15 13 12 5 4 3 2 1 0 
+--------~+-----------------------+------+---+~-----+ a b c I die +---------+-----------------------+------+---+------+ 

packed record 
a: 0 · . 4095; 
b: char; 

end; 

bit --> 15 11 0 

+------------+-----------------------------------+ I extended ••• a I 
+------------+-------------------------~------~--+ 
15 o 
+------------------------------------------------+ 
I b I +------------------------------------------------+ 

Pascal Reference Manual Page 135 



Data Representations Appendix E 

packed 
a: 
b: 

end; 

bit --> 

record 
0 
0 

· . 63; 
• • 63; 

15 10 9 4 3 0 
+-~----------------+--~---------------+------------+ 
I a I b I hole 1 
+---------~--------+~-----------------+------------+ 

The record above is allocated as in the above 
picture, but will be re-allocated as shown below. 

bit --> 15 14 13 8 7 6- 5 o 
+------+-~----------------+------+------------------+ I a -I b 
+---~--+---------~--------+------+------------------+ 

packed record 
a: -1024 . . +1023; 
b: 0 • • 7; 

end; 

bit --> 15 5 4' 3 2 0 
+---~-----------------------------+------+---------+ a I hole I b 

+--------------------------~------+------+---------+ 

In the last example above, the signed subrange field was moved 
up to the left hand end of the word and sign extended for faster 
access. 

Packed arrays are also code consuming, with one exception: 
packed array of char is treated as a special case, and the gen­
erated code is compact. 

Elements of packed arrays are stored with multiple values in a 
byte whenever more than one value can fit in a byte. Elements 
are allocated on 1, 2, 4 or 8-bit boundaries. This only happens 
when the value requires 4 bits or less. 3-bit values are stored 
in 4 bits. 

The first value in a packed array is stored in the lowest num­
bered bit position of the lowest addressed (that is, the most 
significant) byte. Subsequent values are stored in the next 
available higher numbered bit positions in that byte. When the 
.first byte is full, the same positions are used in the next 

Page 136 Pascal Reference Manual 



Appendix E Data Representations 

higher addressed byte. Consider the following examples: 

var 
a: packed array[l •• 12] of boolean1 

byte 1 bit 0 
+----+----+-~--+----+----+----+----+----+ 
I a8 I a7 I a6 I as I a4 I a3 I a2 I al I 

+----+----+----+----+----+----+----+----+ 
byte 2 
+----+----+----+----+----+----+----+----+ 
I ..•• Unused ••• ~ I a121 alll alol a9 I 
+----+----+----+----+----+----+----+----+ 
var 

b: packed array[3 •• 8] of 0 •• 3; 

byte 1 bit 0 
+----+----+----+----+----+----+----+----+ 
I b(6] I b[s] b[4) b[3] 
+----+----+----+----+----+-~--+----+----+ 

. byte 2 
+----+----+----+----+----+----+----+----+ 
I ..•.. Unused •••• I b[8] I b[7] I 
+----+----+----+----+----+----+----+----+ 
var 

c: packed array[O . . 2] of 0 . . 7; 
or 

c: packed array[O ::-2] of 0 . . 15; 

byte 1 bit 0 
+----+----+----+----+----+----+----+----+ 

c [1] c[O] 
+----+----+----+----+----+----+----+----+ 
byte 2 
+~---+----+----+----+----+----+----+----+ I •••• ~ Unused •••• I e[2] I 
+----+----+----+----+----+----+----+----+ 

E.8 Parameter Passing Mechanism 

This Section describes the way in which parameters are passed 
in SVS Pascal. 

Parameters are passed on the stack. Parameters are pushed onto 
the stack in order in which they are declared in procedure and 
function declarations. 

Pascal Reference Manual Page 137 



Data Representations Appendix E 

If the callee is not a procedure or fUDction at the global 
level, the static link is the last thing pushed onto the stack 
before the routine is called. 

Upon return from a routine, all parameters are discarded from 
the stack. Nothing should be on the stack upon return. 

var parameters (call by re£erence) always have a four-byte 
pointer to the variable pushed onto the stack. 

Value parameters are divided into the three categories of sets, 
doubles, and everything else. 

': The caller always pushes sets onto the stack. A set which 
occupies, one byte is pushed with a move.b instruction. A set 
which occupies more storage than one byte is pushed with the 
least significant element in the most significant word. Thus the 
representatIon of a set on the stack is the same as the represen­
tation in memory. 

The caller always pushes doubles onto the stack as well. This 
is usually accomplished by two move.l instructions in such a 
manner that the representation a double on the stack is the same 
as the representation in memory (that is, with the sign bit in 
the lowest addressed byte). 

Other value parameters are pushed as follows: 

• a one-byte value is pushed with a move.b instruction. 

• a two-byte value is pushed with a move.w instruction. 

• a four-byte value is pushed with a move.l instruction. 

• if a value is longer than four bytes, and not a double, the 
address of the data is pushed onto the stack and the called 
procedure or function copies the data into local storage. 

Procedure and function parameters are pushed as follows: 

• the address of the procedure or function is pushed onto the 
stack. 

• the static link is then pushed onto the stack if the procedure 
or function is not at the global (outermost) level. If the 
procedure or function is global (at the outermost level), the 
value Dil(O) is pushed onto the stack instead of the static 
link. 

Punction results are returned in register DO, or in the case of 
a double function in DO and Dl. 

Page 138 Pascal Reference Manual 



Appendix E Data Representations 

E.9 Register Conventions 

Registers AO, A1, DO, D1, and D2 are available as scratch 
registers. That is, they may be clobbered by a function or 
procedure. All other registers must be preserved across calls. 
In addition, register A4 and AS must contain their original 
values whenever any external routine is called. A4 is used in 
addressing external entry points and AS is used to access the 
standard input and output, argc and argv, ioresult, etc. 

E.10 Limitations On Size of Variables 

There is no limitation on the number of bytes allocatable for 
variables. However, a maximum of 30R bytes of value parameters 
cannot be exceeded. Furthermore, when more than 30R bytes of 
variables exist in either- the main program's global scope, or in 
any local scope of a procedure or function (but not uDi~ glo­
bals), the largest values will be accessed via a pointer, result­
ing in somewhat slower code. This mechanism is transparent to 
the user, so that no changes to source code are required. 

Global variables in units are accessed via 32-bit absolute 
addressing modes. Therefore the pointer mechanism does not apply: 
to ani~s with more than 30X bytes of globals. 

The maximum size of a record variable is 32K bytes. 

There is no limitation on the size of variables which can be 
allocated by the NEW procedure. 

E.ll Compiler Generated Linker Names 

This section describes the manner in which the Pascal compiler 
generates names of local and global procedures so that the Linker 
can resolve external references at link time. 

Procedures which are global (or external) are given the names 
which the user assigns to them. The compiler converts all such 
names to upper case, and truncates them to eight characters in 
length. 

Procedures which are local (not visible in the global scope) 
are assigned names of the form: 

$nnn 

where 'nnn' is a decimal number. The numbers may possibly have 
trailing spaces. Procedures of the same name but in different 
scopes have different names. In other words, all local names in 
a given compilation unit are unique. 

Pascal Reference Manual Page 139 



Data Representations Appendix E 

When the linker or librarian sees a collection of compiled 
units, the local names may be renumbered, but the actual name 
that the user assigned to the procedures are carried along with 
the number. 

Page 140 Pascal Reference Manual 



Appendix F Operating the SVS Pascal System 

Appendix P - Operating the SVS Pascal Systea 

This appendix will describe·those characteristics of the SVS 
Pascal system which are similar among the various environments in 
which the system operates. The appendix which follows this one 
describes the implementation specific details of the Pascal sys­
tem under your operating system. The information in this appen­
dix describes the Pascal system in the form it is released by 
SVS. Some of· the vendors of the system provide additional utili­
ties which can used in conjunction with SVS Pascal and which may 
alter the appearance of the system. 

F.l System Components 

In order to most effectively utilize the SVS Pascal system, it 
is nec~~sary to understand the function and operation of its 
various components. In all environments a completely straight 
forward procedure is provided for compiling and executing simple 
Pascal programs (see next appendix). The information provided 
here, will only be necessary for more complicated situations 
involving separate compilation and multiple source languages. 

F.l.l Compiler Front End 

Pascal source programs (actually Pascal compilation units) are 
accepted by the compiler front end, syntax checked, and an inter­
mediate representation of the program is written to a file. This 
file is passed to the code generator which generates object code. 
The input source program may -include- other files (see Chapter 
9). In addition to the input source file, the Pascal compiler 
front end accepts certain directives from the command line, which 
are described in the ftCommand Line Directives and Compiler 
Options· section of this appendix. 

Input files to the Pascal front end generally are files with 
names which end in -.pas ft , although this differs among operating 
environments. The output file from the Pascal compiler front end 
is an intermediate representation of the program which is placed 
in a file which generally ends in ft.ift. "There is virtually noth-
ing which can be done with this ft.ift file except provide it as 
input to the code generator. 

Pascal Reference Manual Page 141 



Operating the SVS Pascal System 

F.l.2 Code Generator 

Appendix F 

.The code generator for the Pascal system accepts as input the 
ft.ift file produced by the front end and generates linkable object 
code in a file with a name which generally ends in ".obj". 

The same code generator is utilized in compiling SVS Pascal, 
SVS PO~, and SVS C and the resulting ".obj" files are link­
able providing the applicable rules are followed. 

F.l.3 Linker 

A utility is provided with SVS Pascal for linking ".obj" files 
with each other and with run time libraries which are part of the 
language system. The linker is highly specific to the operating 
environment and its operation is described in detail in the fol­
lowing appendix. There is, however, certain general information 
which applies to all of the linkers. 

Each linker accepts as inputs ".obj" files and produces an out­
put which is acceptable to the operating system as an object 
file. In some operating environments, the linker's output file 
is further linkable in the target environment with object code 
generated by the operating system assembler, etc. In all cases, 
the linker may be run only once per executable image. The input 
to the linker must contain exactly one main program but may con­
tain many object files derived from units. 

F.l.4 Libraries 

Object files in ".obj" format mayor may not be libraries. The 
result of a run of the code generator is an ".obj" which is not a 
library, although it is possible that such a file contains object 
code with corresponds to many subroutines. The main difference 
between ".obj" files which are libraries and those which are not 
libraries is that the linker includes all of the object code from 
non-library input files but only that object code whi~h is refer­
enced from library input files. The determination of what is 
referenced is made based on unresolved external code references 
in previous input files to the linker. Therefore the order that 
files are presented to the linker is important. 

When linking Pascal programs, the run time library provided 
with the system, paslib.obj, must be the last input file to the 
linker. 

F.l.S Error Messages 

The Pascal system contains a file of compile time error mes­
sages. If this file is given the appropriate name, the compiler 

Page 142 Pascal Reference Manual 



Appendix F Operating the SVS Pascal System 

will generate English error messages along with error numbers'. 
If not, the compiler will only give error numbers. The name of 
this file differs from one implementation to another and can be 
found by referring to the following appendix. 

P.2 Command Line Directives and Compiler OPtions 

The Pascal compiler front end is invoked to compile a source 
file named ·prog.pas· (other. file name endings required on other 
systems) with a command line of the form: 

pascal prog.pas {options ••• } 

Any number of command line options may appear and they may appear 
in any order. The possible command line options are: 

+q -q 

+p -p 

+f -£ 

-lfname 

-efname 

-ifname 

Show more (-q) or less (+q) information on the 
progress of the compile to the user. The default 
setting varies among different implementations. 

Prompt (+p) or don't prompt (-p) to the standard 
input in the case of a compile time error. The 
default setting varies among different implemen­
tations. Prompting mode is useful so that error 
messages do not fly off CRT screens but is awk­
ward when compiling in background mode. 

Generate code for the Sky floating point hardware 
board (+f) or generate code for software floating 
point (-f). This option is only enabled in sys­
tems which support the Sky board and will result 
in an error if not enabled. The default is -f, 
no floating point hardware. Note: If the Sky 
floating point hardware interface is to be used, 
the entire program must be compiled with the +f 
flag set and·the resulting object code must be 
linked with sky.paslib.obj instead of paslib.obj. 

Create a listing file of the source program in 
the file named fname. 

Place a summary of the compile time errors on 
file named fname. 

Name the "~i" file fname. If this option is not 
provided, the ".i" file when compiling a source 
program named prog.pas is named prog.i. 

Under certain operating systems the code generator is directly 
invoked by the Pascal compiler front end. In this case, there is 
an additional command line option. 

Pascal Reference Manual . Page 143 



Operating the SVS Pascal System Appendix F 

-of name Name the w.obj" file fname. If this option is 
not provided, the w.obj" file when compiling a 
source program named prog.pas is named prog.obj. 

Onder systems in which the code generator is not directly 
invoked by the Pascal compiler front end, the code generator is 
invoked using a command of the form: 

code prog.i {optionalfname} 

where leaving off the optional file name results in an output 
file named prog.obj. If the optional file name is provided, the 
output file is named optionalfname. 

, See the appendix which follows for a description of command 
line arguments" and options related to the linker. 

F.3 Linking Programs which Utilize Pascal and FORTRAN 

There are certain rules which must be observed by programmers 
wishing to combine object code compiled under more than one 
language processor. Throughout the following discussion, Pascal, 
PO~, and C refer to the SVS implementations of these 
languages. 

F.3.l What Language must Supply the Main Program 

In all cases in which PO~ code is present, the main program 
must be PO~. In the case where Pascal and C are to be 
present, either language may supply the main program. If the C 
system is not SVS C, then the main program must be Pascal. 

P.3.2 Referring to the Command Line Arguments 

In all cases in which the command line arguments are to be 
referenced from· C, C must provide the main program. This is a 
consequence of the fact that command line arguments are "parame­
ters" to the C main routine. Command line arguments are avail­
able from Pascal and PO~ regardless of which language pro-
vides the main program. . 

F.3.3 Dynamic Memory Allocation and Deallocation 

A program may utilize the C library memory allocation and deal­
location package (malloc, free, etc.) providing that Pascal com­
ponents of the program do not call release. Similarly, Pascal 
components should not call release if PO~ components perform­
ing any I/O are present. If the C system is not SVS C, then the 
C routines ~ ~ utilize any dynamic memory allocation or 

Page 144 Pascal Reference Manual 



Appendix F Operating the SVS Pascal System 

deallocation directly or through the operating system run time 
library. 

F.3.4 Parameter Conventions 

The calling convention in C is such that parameters are pushed 
in "reverse" order from the order in which they appear and the 
calling routine is responsible for popping parameters off the 
stack after the call returns. Pascal and PO~ push parameters 
in order and the exit code of the called routines is responsible 
for popping off its parameters. Pascal contains a "cexternal" 
declaration (similar to Pascal "external") which generates calls 
to C routines in which the parameters are popped off at the cal­
ling site after the subroutine returns. The parameters must 
appear in reverse order in the Pascal call as compared to the 
order expected by C. There is no direct language support for 
calling C from PO~ or Pascal and PO~· from C, but parame­
terless routines or assembly language interfacing routines can be 
utilized for these purposes. It is often easiest to go through 
Pascal when calling C from PO~. 

F.3.4.l .Calling C from Pascal 

The Pascal program should contain a cexternal declaration with 
all parameters four bytes in length (except floating point which 
should .be double precision). Addresses may be passed by specify­
ing the parameters to be var parameters. The following declara­
tion in Pascal 

function cfunct(i,j: longint; d: double): longintj cexternal; 

can be used to call the C function 

cfunct(d,j,i) 
int i,j; 
double d; 
{ 
if (d == 0.0) return{i+j); else return(i-j)1 
} 

No assembly language is necessary to link these routines. Note: 
on some operating systems the C system prepends underscores to 
external names and the Pascal declaration would have to be for a 
function named cfunct rather than a function named cfunct. 

F.3.4.2 Calling Pascal from C 

There is no way to tell the C system that an external reference 
is to a non C routine. Therefore, using the types of the vari­
ables from the previous example, a C call of the form 

Pascal Reference Manual Page 145 



Operating the SVS Pascal System Appendix F 

i = pasfuric(d,j,i)1 

would require an assembly language ·wrapper· of the form 

• text 
.globl 
.globl 

pasfunc: 
movl 
jsr 
subl 
movl 
rts 
.bss 

savera: . - . 

pasfunc 
PASFUNC 

sp@+,savera 
PASFUNC 
'16,sp 
savera,-sp@ 

+ 4 

to call a ,ascal function declared with the header 

function pasfunct(i,j: longint; d: double): longint; 

The important items to note are: Pascal entry point is in upper 
case, C external reference is in the same case as the programmer 
specified. The .globl for the C entry point may need a prepended 
underscore on some operating systems. The ·wrapper" will not 
work if ·the interlanguage call is recursive. The C calling site 
expects to pop off 16 bytes of parameters after the call returns, 
but the Pascal function has already popped off the parameters. 
Therefore, the ·wrapper· decrements the stack pointer by the 
amount the calling site expects to pop off. 

The exact syntax of the assembly language will vary from system 
to system. In general the object code for ·wrapper·s is linked 
into the executable program at the last linking step of the com­
pile. Normally, a wrapper is required for each C to Pascal call. 

The above procedure will not work with C systems other than SVS 
C -secause other C systems expect ciIIid sUbroutines to preserve 
different registers than Pasca1 functions preserve. In this 
case, the "wrapper· must be enhanced to preserve the registers 
required by the calling C language subroutine. 

F.3.4.3 Calling PO~ from Pascal 

It is straight forward to call PORTBAN subroutines from Pascal. 
The called routines should be declared to be external in the 
Pascal compilation with formal parameter declarations which match 
PORTBAN parameter conventions. In particular, Pascal var parame­
ters will match the PORTBAN call by reference convention. If the 
receiving PORTBAN routine expects a character parameter, it will 
be necessary to pass the length of the packed array of char as an 
explicit two byte value parameter (as described in the parameter 
passing section of the PORTBAN reference manual). Note: Pascal 

Page 146 Pascal Reference Manual 



Appendix F Operating the SVS Pascal System 

strings are not compatible with the PO~ character datatype. 

F.3.4.4 Calling Pascal from PO~ 

When calling an external routine from PO~, it is merely 
invoked without any special declaration. This called routine may 
have been written in Pascal. In the event that it is, the rou­
tine should be written with formal parameters declared in the 
manner which is consistent with what PO~ would expect from a 
receiving routine written in PO~. Pascal formal parameter 
declarations are adaquate for expressing all of the interfaces 
expected by PO~ calling sites. 

F.3.S Run Time Libraries 

When linking multiple languages, the last input file provided 
to the linker must always be paslib.obj. Immediately preceding 
paslib.obj must be clib.obj and ftnlib.obj, in either order. The 
former must be present if C is present and the latter must be 
supplied if PO~ is contained in the program being linked. 

F.3.6 Upper and Lower Case External Naming Conventions 

It is the convention in Pascal and PO~ to upper case all 
external names except routine names which are declared cexte~nal 
in Pascal. These names are passed directly to the linker as they 
appeared in the eexternal declaration. In C, upper and lower 
case letters are distinct, so it is the convention to pass 
letters directly through as they were supplied by the programmer. 
For interfacing purposes, use upper case names in C, or use 
cexternal in Pascal, or use assembly language to bridge the nam­
ing conventions. 

F.3.7 Prepended Underscore to Externai Names 

Some of the operating system environments prepend the under­
score character to C external names. Pascal cexternal names do 
not get underscore prepended to them in any environment, but 
Pascal accepts underscore as a letter so that the user may gen­
erate Pascal cexternals with leading underscores. 

Pascal Reference Manual Page 147 



Operating the SVS Pascal System Appendix F 

Page 148 Pascal Reference Manual 



Appendix G CPM Operating System Specific Information 

Appendix G - CPR Operating Systea Specific Info~tion 

Although the SVS Pascal system appears to be almost identical 
under a wide variety of operating systems, there are minor 
differences, particularly related to the linker and in operating 
procedures, among the various environments. This appendix will 
provide the implementation dependent details related to SVS 
Pascal running under the CPM operating system. 

G.l Compiling a Simple Program 

The instructions provided here for compiling and linking a 
Pascal program reflect the system as it is released by SVS. Some 
vendors of the system provide additional utilities for sequencing 
compiles for which there may be separate documentation. 

Appendix F of this manual described in some detail the com­
ponents of the SVS Pasca1 system. For most Pascal programs, the 
following simple procedure will be completely adequate for 
sequencing a compile: 

Create a ·submit file· called P.SUB with the following commands: 

pascal $l.pas 
code $l.i 
ulinker -1 $1.0 $l.obj paslib.obj 
era $l.obj 
1068 -s -0 $1.68k -tl0100 s.o $1.0 clib 

To compile a Pascal program in a file named prog.pas, execute: 

P prog 

The Pasca1 program and the submit file can be created using the 
system text ~ditor. The submit file assumes that pascal.68k (the 
Pascal compiler front end), code.68k (the code generator), and 
ulinker.68k (the linker) reside in the system in directories from 
which they can be executed. The submit file also assumes that 
paslib.obj is the correct pathname for accessing this file. 
These naaes will most likely have to be changed to reflect the 
location of these files on your system. 

The lines of the submit file do the following: The first two 
lines run the front end and code generator on files whose names 

Pascal Reference Manual Page 149 



CPM Operating System Specific Information Appendix G 

are derived from the cOJDIDand line in which . the submit file is 
invoked. The linker is run (in its simplest form, see below for 
more details) with -1 inhibiting a linkmap listing file, with 
output file $1.0, and with two input files, including the SVS 
supplied library. Ulinker produces a file which is then linked 
to those CPM system calls which are utilized by the program in 
the 1068 step (which invokes the CPM system linker). 

G.2 Error Message File 

SVS Pascal includes a file called pascterr.src which should be 
placed in either the a: or b: drive. This will allow the com­
piler to display English messages for errors which it detects. 

G.3 Ulinker 

Onder CPM, ulinker is the SVS linker. The general operation of 
the linker is described in Appendix F. This section will 
describe in detail the modes of operation of ulinker and its load 
map listing option. 

G.3.l Ulinker Inputs 

Olinker links object code in ·.obj" format, including 
libraries. In addition, ulinker accepts input from the command 
line or interactively as described below. 

G.3.2 Ulinker Outputs 

Olinker creates partially linked object code in CPM ".0" format 
as its primary output. Optionally, ulinker can produce a listing 
file which is a load map of global entry points in the created 
".0" file. The form of this map and information contained in it 
is best described by the following example with subsequent expla­
nations: 

Example 2! Ulinker Listing Ii!! 

Linking segment I I (670) 
MC68000 CPM Object Code Formatter 

Pile: prog.o 

Memory map for segment I 

COMPUTES - COMPUTES 
FAIRLYSI - PAIRLYSI 
$ START - $START 

Page 150 

OOOOlE 
000054 
000054 

05-oct-83 

Pascal Reference Manual 



Appendix G CPM Operating System Specific Information 

IP830701 - IP830701 
'TERM -, '!'BRM 
'-END - '-END 
I-WRS - '-WRS 
II MUL4 - IY MDL4 
I I-MOD 4 - II-MOD4 
II-DIV4 - II-DIV4 

No: Segment: Size: 
O. I • 00029E 

Start Lac - 000054 
Code Size - 00029£ 
Global Size - 000006 

000082 
OOOlEO 
0001E2 
0001E6 
OOOlEC 
00021C 
000228 

Explanation of Ulinker Listing !!!! 

The listing file was generated from the following Pasca1 program: 

program fairlysimple; 
var i: integer; li: longint; 

procedure computesome; 
begin 
li :- (Ii * li) mod 99999; 
li :- li div 17; 
end; 

begin 
li :- 2; 
for i := 1 to 100 do 

computesome; 
end. 

The segment named by 8 blanks had 670 (decimal) bytes in it. 
Under CPM there is no reason for programmers to explicitly deal 
with segments, since u1inker handles this automatically. 

There were ten entry points in the linked files. Eight of these 
were pulled out of the library and two are recognizable as user 
function names. The addresses of these entry points are given in 
hex and are text area relative, but will be further relocated ~ 
the !2!! step of the compilation.~he relative addresses (dis­
tance between them) will remain intact through the 1068 step. 

There would be a data areas shown associated with each of the 
UDi~s in the link, mapped to the data or bss area depending upon 
whether the area is initialized at compile time (which is possi­
ble using PO~ block data and named common). Sizes and loca­
tions of these data area listings are in hex and relative to the 
start of the data or bss area as appropriate. 

Pascal Reference Manual Page 151 



CPM Operating System Specific Information 

G.3.3 Running Ulinker from the Command Line" 

The command line form of running ulinker is: 

Appendix G 

ulinker ~istfname outputfname inputfname {inputfname ••• } 

where the optional listing file is created on a file named 
listfname providing that listfname is not equal to -1 (no listing 
file to be created directive). The command line arguments are 
poSitional. No file name suffixes are enforced by ulinker in 
this mode so complete file names must be entered. 

G.3.4 Running Ulinker Interactively 

It is often not convenient or not possible to have a command 
line which is long enough to have all of the input files listed. 
In this event, ulinker can be run interactive. Bxecute ulinker 
without any command line arguments and it prompts: 

Listing file -

Any file name provided creates the listing file. Bnter just 
return to suppress the optional listing file. The next prompt 
is: 

Output file [.0) -

Ulinker requires an output file. If the file name provided does 
not end in w.ow, ulinker will append this file name extension 
onto the name which is input. Following this prompt, ulinker 
will repeatedly prompt: 

Input file [.obj) -

for its input files, until a plain return is typed, indicating 
that the input file list is completed. Ulinker will append the 
w.obj- suffix onto input file names if it is not supplied by the 
user. Running in this mode, there is no limit on the number of 
input files which ulinker can process. 

G.3.S Running Olinker with Standard Input Redirected 

With many input files, it is most convenient to operate ulinker 
in its interactive mode with standard input redirected. For 
example, run ulinker as follows: 

ulinker <cad 

where the file cad contains a line for the listing file name, a 
line for the output file name, lines for the input file names, 
and a blank line to terminate the input file list. 

Page 152 Pascal Reference Manual 



Appendix G CPM Operating System Specific Information 

G.3.S.l Symbol Table Information Placed in Output Pile 

Utilizing the CPM utility nm68 it is possible to examine the 
symbol table information placed in the output file by ulinker. 
In general, all entry points which are not local to another pro­
cedure (a situation which only occurs in Pascal) are placed into 
the ·.0· file symbol table. All entry points appear in the 
ulinker listing file, including those which are Pascal local pro­
cedures. There are also symbol table entries for unresolved 
external references and for the program entry point (named main 
under CPM). -

G.3.6 Treatment of Unresolved External References 

Unresolved external references are passed through into the out­
put file for potential linking in the 1068 step of the compile. 
In the event that these references are not resolved at that 
stage, an error message is generated then. 

G.3.7 Segments 

Under some operating systems other than CPM, the SVS Pascal 
system contains a meaningful object code concept referred to as 
segments. Onder CPM, there are segments in the object code, but 
they are not semantically meaningful. Olinker automatically 
creates segments as needed and there is no reason for the user to 
do anything explicitly about creating and/or naming segments. 

G.3.8 Errors Detected by Olinker 

Most of the error messages which come out of ulinker are com­
pletely self explanatory. The error message: 

*** In data area named ABC 
*** at offset 999 bytes into that data area 
*** Patal Error - overlapping data initialization 

is caused by user programs initializing the same location in the 
named data area more than once. The error message: 

*** Error - Double defined: ABC 

is caused by the same entry point name being used in more than 
one input file. Only 8 characters are significant for the 
linker. The error message: 

*** Error - Double defined unit 

is caused by linking more than one unit with the same name. The 
link name for Pascal units begins and ends in slashes and 

Pascal Reference Manual Page 153 



CPM Operating System Specific Information Appendix G 

contains the six initial characters of the Pascal unit user name 
between the slashes. This facilitates initializing Pascal unit 
globals using PORTRAN named common and data statements. One 
consequence of this link naming convention is that only six char­
acters of the user unit name are utilized for resolving naming 
conflicts. The error message: 

*** Error - Multiple start locations 

is caused by having more than one main program among the input 
files. 

G.4 Linking to CPM Assembly Code 

It is normal for the output of ulinker to contain unresolved 
external references to CPM system calls (such as o~enb, close, 
and write). These are resolved by the 1068 link1ng seep by 
using the operating system default library of CPM object code. 
The user may do the same kind of linking to CPM assembly code by 
providing the assembly language source as an additional argument 
to the 1068 compilation step which will automatically invoke the 
operating system assembler. 

One limitation on code which is linked in with code generated 
by the SVS languages is that no CPM system calls on malloc, free, 
sbrk, or related routines (directly, or through other linked in 
routines) may be used. The SVS languages handle the CPM break 
area of memory, including versions of malloc and free in the SVS 
C library, in a manner which is not fully compatible with the CPM 
routines. 

User's should also beware of differing floating point formats. 
Some of the CPM systems do not use IEEE format floating point. 
In this event, passing floating point values will result in 
strange results. 

It is not guaranteed that I/O will work as expected across 
language boundaries, particularly with respect to object code 
generated by non SVS systems. 

Any code linked into programs generated by the SVS languages 
must obey the register and calling conventions assumed by the 
system. In particular, all called routines must preserve regis­
ters D3 through D7 and A2 through A6. More details on the cal­
ling conventions are provided in the appendix on data representa­
tions. 

G.S Argc and Argv 

Under CPM, the name of the program is the first argument in the 
argv list of the invoked program, that is argv[l)A. Argc is 

Page 154 Pascal Reference Manual 



Appendix G CPM Operating System Specific Information 

always at least 1. The first user supplied command line argument 
is argv[2]A. This is sometimes confusing for CPM programmers who 
are aore used to seeing the name of the invoked program as the 
zero'th argv in the C programming language and the first user 
supplied command line argument as the one referenced using array 
index 1 on the argv array. The Pascal numbering scheme is con­
sistent with the fact that argv is a one origin indexed array. 

G.6 Features not Implemented Under CPM 

The following features of SVS Pascal are not implemented under 
CPM: call and unit I/O (such as unitread, unitwrite, etc.). 

Pascal Reference Manual Page 155 



CPM Operating System Specific Information Appendix G 

Page 156 Pascal Reference Manual 


